論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
共積模型適合度檢定 none |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
47 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2009-06-24 |
繳交日期 Date of Submission |
2009-07-11 |
關鍵字 Keywords |
共積、KVB法 Robust Test, KVB Approach, Cointegration, Mixingale |
||
統計 Statistics |
本論文已被瀏覽 5894 次,被下載 1955 次 The thesis/dissertation has been browsed 5894 times, has been downloaded 1955 times. |
中文摘要 |
Lee, Ying, and Wang (2007) 推導出一套針對兩個共積模型的配適能力做比較的檢定。文中假設兩共積模型的干擾項在跨期具有Mixingale 性質的相依關係, 但此兩組數據彼此間不存在相關性。在此假設下討論兩模型的共積干擾項的變異數是否有顯著較小的情形, 若有一共積模型干擾項的變異數顯著較小,則此模型配適能力較高。本文放寬原文不存在相關性的假設, 並運用Kiefer, Vogelsang, and Bunzel (2000) (KVB 法) 所提出之方法, 繞過共變異矩陣的一致性估計問題, 建立新的穩健的(Robust) 檢定統計式。 |
Abstract |
none |
目次 Table of Contents |
第1章 緒論 ............................................................................1 第1.1節 研究目的 .................................................................1 第1.2節 文獻回顧 .................................................................3 第2章 計量方法 ....................................................................6 第2.1節 模型設定..................................................................6 第2.2節 共積模型配適檢定..................................................8 第2.3節 KVB法下的檢定統計式........................................19 第2.4節 模擬檢定統計式之極限分配的臨界值表............21 第3章 實證分析 ..................................................................24 第3.1節 資料來源與處理 ...................................................25 第3.2節 單根及共積檢定 ...................................................25 第3.3節 實證結果 ...............................................................26 第4章 結論 ..........................................................................29 參考文獻 .............................................................................30 附錄A ..................................................................................33 附錄B ..................................................................................35 附錄C .................................................................................36 |
參考文獻 References |
1.Andrews, D.W. K. (1988). Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables. Econometric Theory, 4(3), 458-467. 2.Andrews, D. W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation. Econometrica, 59(3), 817-858. 3.Ball, L., and Croushore, D. (2003). Expectations and the Effects of Monetary Policy. Journal of Money, Credit and Banking, 35(4), 473-484. 4.Davidson, J. (1994). Stochastic Limit Theory: An Introduction for Econometricians. Oxford: Oxford University Press. 5.Davidson, J., and De Jong, R. M. (2000). The Functional Central Limit Theorem and Weak Convergence to Stochastic Integrals II. Econometric Theory, 16(5), 643-666. 6.De Jong, R. M., and Davidson, J. (2000). The Functional Central Limit Theorem and Weak Convergence to Stochastic Integrals I. Econometric Theory, 16(5), 621-642. 7.Doob, J. L. (1990). Stochastic Processes. New York: Wiley. 8.Engle, R. F., and Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251-276. 9.Gallant, A. R. (1987). Nonlinear Statistical Models. New York: Wiley. 10.Hamilton, J. D. (1994). Time Series Analysis. Princeton, N.J: Princeton University Press. 11.Hansen, B. E. (1992). Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends. Journal of Econometrics, 53(1-3), 87-121. 12.Khuri, A. (1993). Advanced Calculus with Applications in Statistics. New York: Wiley. 13.Kiefer, N. M., and Vogelsang, T. J. (2002a). Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation. Econometrica, 70(5), 2093-2095. 14.Kiefer, N. M., and Vogelsang, T. J. (2002b). Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal to Sample Size. Econometric Theory, 18(6), 1350-1366. 15.Kiefer, N. M., Vogelsang, T. J., and Bunzel, H. (2000). Simple Robust Testing of Regression Hypotheses. Econometrica, 68(3), 695-714. 16.Kuan, C., and Lee, W. (2006). Robust M Tests Without Consistent Estimation of the Asymptotic Covariance Matrix. Journal of the American Statistical Association, 101(475), 1264 - 1275. 17.Lee, Ying, and Wang (2007). The Monetary Policy of the US-Application of Test of Cointegration with Unequal Variances, The Taipei International Conference on Modeling Monetary and Financial Sectors, Institute of Economics, Academia Sinca, Taipei. 18.McLeish, D. L. (1975). A Maximal Inequality and Dependent Strong Laws. The Annals of Probability, 3(5), 829-839. 19.Newey, W. K., and West, K. D. (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3), 703-708. 20.Ng, S., and Perron, P. (1996). The Exact Error in Estimating the Spectral Density at the Origin. Journal of Time Series Analysis, 17(4), 379-408. 21.Rencher, A. C. (1995). Methods of Multivariate Analysis. New York: Wiley. 22.Scott, D. J. (1973). Central Limit Theorems for Martingales and for Processes with Stationary Increments Using a Skorokhod Representation Approach. Advances in Applied Probability, 5(1), 119-137. 23.Stout, W. F. (1974). Almost Sure Convergence. New York: Academic Press. 24.Thornton, D. L. (2006). When Did the FOMC Begin Targeting the Federal Funds Rate? What the Verbatim Transcripts Tell Us. Journal of Money, Credit and Banking, 38(8), 2039-2071. 25.White, H. (2001). Asymptotic Theory for Econometricians. San Diego: Academic Press. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內外都一年後公開 withheld 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |