Responsive image
博碩士論文 etd-0730122-141212 詳細資訊
Title page for etd-0730122-141212
論文名稱
Title
氮化工程對於鐵電氧化鉿鋯之研究
Investigation of Nitridation Engineering on Ferroelectric HfZrO2
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-08-25
繳交日期
Date of Submission
2022-08-30
關鍵字
Keywords
鐵電、氮處理、氮化鉿、聯氨、氧空缺、垂直堆疊奈米片鐵電場效電晶體
ferroelectric, nitrogen treatment, hafnium nitride, hydrazine, oxygen vacancies, vertically stacked nanosheet ferroelectric field-effect transistors
統計
Statistics
本論文已被瀏覽 129 次,被下載 0
The thesis/dissertation has been browsed 129 times, has been downloaded 0 times.
中文摘要
至今為止,以原子層沉積氧化鉿鋯作為鐵電層對其極化量的研究中,鐵電層厚度在十奈米以下的極化值漸漸下降,且在五奈米以下顯示出較少的鐵電性。在此篇論文中,使用兩種不同氮化工程對五奈米的鐵電氧化鉿鋯影響進行研究,以原子層沉積氮化鉿製作了三明治夾層的結構氮化鉿/氧化鉿鋯/氮化鉿,在快速熱退火過程處理中,上層氮化鉿抑制了鐵電層與上電極的氧化,抑制了氧空缺的形成,因此在極化值和漏電流的表現皆有提升。另一種為使用聯氨前驅物於鐵電層和下層氧化層之間進行表面處理,在給予不同次數聯氨處理下討論鐵電性的表現,在給予越多次數聯氨處理的樣品下會造成界面處缺陷越多導致鐵電性降低。最後,展示了一層垂直堆疊環繞式閘極鐵電場效電晶體,使用10奈米多晶矽作為通道,8奈米的鐵電氧化鉿鋯有顯示鐵電的行為,電流開關比約有四個級距且記憶窗大小可達1V,討論在不同的通道長度下電流特性上的表現。
Abstract
So far, in the research on the polarization of the HfZrO2 (HZO) ferroelectric layer deposited by atomic layer, the polarization value of the ferroelectric layer thickness below ten nanometers gradually decreases, and the polarization value below five nanometers shows less. In this thesis, the effect of five-nanometer ferroelectric HZO was investigated using two different nitridation engineering. The sandwich structure of HfN/HZO/HfN was fabricated by atomic layer deposition. In the rapid thermal annealing process, the upper layer of HfN inhibits the oxidation between the ferroelectric layer and the upper electrode, and inhibits the formation of oxygen vacancies. The performance of polarization value and leakage current are improved. The other is to use hydrazine precursor to perform surface treatment between the ferroelectric layer and the chemical oxide. The performance of ferroelectricity is discussed under different cycles of hydrazine treatment. The ferroelectric performance will be discussed. Under the samples with more cycles of hydrazine treatment, the more defects at the interface were generated.
Finally, a vertically stacked GAA FeFET has fabricated, using 10 nm polysilicon as the channel, and 8 nm ferroelectric HZO shows ferroelectric behavior. With on/off ratio for about four orders, the memory window can reach 1V, and the performance of current characteristics under different channel length will be discussed.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 11
1.1 前言 11
1.2 鐵電材料 13
1.3 實驗動機 15
第二章 插入氮化鉿(HfN)上下夾層對氧化鉿鋯(HfZrO2)鐵電性的研究 16
2.1 介紹 16
2.2 實驗步驟與流程 17
2.3 材料分析 21
2.3.1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 21
2.3.2 低掠射角X光繞射儀 (Grazing Incidence Small Angle X-Ray Scattering, GIXRD) 22
2.4 結果與討論 23
2.4.1 鐵電特性 23
2.4.2 耐久性 27
2.4.3 閘極漏電流 29
2.4.4 崩潰電場 33
2.4.5 結論 35
第三章 聯氨處理對氧化鉿鋯(HfZrO2)鐵電性的研究 36
3.1 介紹 36
3.2 實驗步驟與流程 36
3.3 材料分析 40
3.3.1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 40
3.3.2 低掠射角X光繞射儀 (Grazing Incidence Small Angle X-Ray Scattering, GIXRD) 40
3.3.3 X射線光電子能譜學(X-ray Photoelectron Spectroscopy, XPS) 42
3.4 結果與討論 45
3.4.1 鐵電特性 45
3.4.2 耐久性 45
3.4.3 閘極漏電流 48
3.4.4 崩潰電場 51
3.4.5 結論 52
第四章 垂直堆疊奈米片鐵電場效電晶體 53
4.1 介紹 53
4.2 元件製程步驟 53
4.3 結果與討論 58
4.3.1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 58
4.3.2 電流特性曲線 60
4.4 結論 64
第五章 結論 65
參考文獻 66
參考文獻 References
[1] K. J. Kuhn, "Moore's Law Past 32nm: Future Challenges in Device Scaling," in 2009 13th International Workshop on Computational Electronics, 2009: IEEE, pp. 1-6, doi: 10.1109/IWCE.2009.5091124.
[2] D. Rathee, M. Kumar, and S. K. Arya, "CMOS development and optimization, scaling issue and replacement with high-k material for future microelectronics," Int. J. Comput. Appl, vol. 8, no. 5, p. 10, 2010, doi: 10.5120/1208-1730.
[3] J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015, doi: doi.org/10.1016/j.mser.2014.11.001.
[4] K. Yim, Y. Yong, J. Lee, K. Lee, H.-H. Nahm, J. Yoo, C. Lee, C. Seong Hwang, and S. Han, "Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations," NPG Asia Materials, vol. 7, no. 6, pp. e190-e190, 2015, doi: 10.1038/am.2015.57.
[5] A. Lüker, "A short history of ferroelectricity," Instituto Superior Técnico Departamento de Física, 2011. [Online]. Available: http://groups.ist.utl.pt/rschwarz/rschwarzgroup_files/Ferroelectrics_files/A%20Short%20History%20of%20Ferroelectricity.pdf.
[6] Z. Bi, Z. Zhang, and P. Fan, "Characterization of PZT ferroelectric thin films by RF-magnetron sputtering," in Journal of Physics: Conference Series, 2007, vol. 61, no. 1: IOP Publishing, p. 025, doi: 10.1088/1742-6596/61/1/025.
[7] K. J. Choi, M. Biegalski, Y. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. Chen, X. Pan, and V. Gopalan, "Enhancement of ferroelectricity in strained BaTiO3 thin films," Science, vol. 306, no. 5698, pp. 1005-1009, 2004, doi: 10.1126/science.1103218.
[8] H. Guo, D. Bao, and Y. Zhang, "Characterization of PZT ferroelectric thin films prepared by a modified sol-gel method," in 2008 IEEE Ultrasonics Symposium, 2008: IEEE, pp. 2130-2133, doi: 10.1109/ULTSYM.2008.0527.
[9] M. Okuyama and Y. Hamakawa, "Preparation and basic properties of PbTiO3 ferroelectric thin films and their device applications," Ferroelectrics, vol. 63, no. 1, pp. 243-252, 1985. [Online]. Available: https://doi.org/10.1080/00150198508221406.
[10] Z. Fan, J. Chen, and J. Wang, "Ferroelectric HfO2-based materials for next-generation ferroelectric memories," Journal of Advanced Dielectrics, vol. 6, no. 02, p. 1630003, 2016. [Online]. Available: https://doi.org/10.1142/S2010135X16300036.
[11] I. H. Lone, J. Aslam, N. R. Radwan, A. H. Bashal, A. F. Ajlouni, and A. Akhter, "Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetism," Nanoscale research letters, vol. 14, no. 1, pp. 1-12, 2019. [Online]. Available: https://doi.org/10.1186/s11671-019-2961-7.
[12] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Mueller, A. Kersch, U. Schroeder, and T. Mikolajick, "Ferroelectricity and antiferroelectricity of doped thin HfO2‐based films," Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015. [Online]. Available: https://doi.org/10.1002/adma.201404531.
[13] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," in 2011 International electron devices meeting, 2011: IEEE, pp. 24.5. 1-24.5. 4, doi: 10.1109/IEDM.2011.6131606.
[14] J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, "Ferroelectricity in simple binary ZrO2 and HfO2," Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012. [Online]. Available: https://doi.org/10.1021/nl302049k.
[15] S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, "Ferroelectric Hf0. 5Zr0. 5O2 thin films: a review of recent advances," Jom, vol. 71, no. 1, pp. 246-255, 2019. [Online]. Available: https://doi.org/10.1007/s11837-018-3140-5.
[16] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011. [Online]. Available: https://doi.org/10.1063/1.3634052.
[17] M. H. Park, H. J. Kim, Y. J. Kim, W. Jeon, T. Moon, and C. S. Hwang, "Ferroelectric properties and switching endurance of Hf0. 5Zr0. 5O2 films on TiN bottom and TiN or RuO2 top electrodes," physica status solidi (RRL)–Rapid Research Letters, vol. 8, no. 6, pp. 532-535, 2014. [Online]. Available: https://doi.org/10.1002/pssr.201409017.
[18] B. Y. Kim, S. H. Kim, H. W. Park, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, and D. Shim, "Improved ferroelectricity in Hf0. 5Zr0. 5O2 by inserting an upper HfOxNy interfacial layer," Applied Physics Letters, vol. 119, no. 12, p. 122902, 2021. [Online]. Available: https://doi.org/10.1063/5.0065571.
[19] N. Gong and T.-P. Ma, "A study of endurance issues in HfO 2-based ferroelectric field effect transistors: Charge trapping and trap generation," IEEE Electron Device Letters, vol. 39, no. 1, pp. 15-18, 2017, doi: 10.1109/LED.2017.2776263.
[20] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Involvement of Unsaturated Switching in the Endurance Cycling of Si‐doped HfO2 Ferroelectric Thin Films," Advanced Electronic Materials, vol. 6, no. 8, p. 2000264, 2020. [Online]. Available: https://doi.org/10.1002/aelm.202000264.
[21] V. Iglesias, M. Porti, M. Nafría, X. Aymerich, P. Dudek, T. Schroeder, and G. Bersuker, "Correlation between the nanoscale electrical and morphological properties of crystallized hafnium oxide-based metal oxide semiconductor structures," Applied physics letters, vol. 97, no. 26, p. 262906, 2010. [Online]. Available: https://doi.org/10.1063/1.3533257.
[22] N. Raghavan, K. L. Pey, and K. Shubhakar, "High-κ dielectric breakdown in nanoscale logic devices–Scientific insight and technology impact," Microelectronics Reliability, vol. 54, no. 5, pp. 847-860, 2014. [Online]. Available: https://doi.org/10.1016/j.microrel.2014.02.013.
[23] G. Bersuker, D. Heh, C. Young, L. Morassi, A. Padovani, L. Larcher, K. Yew, Y. Ong, D. Ang, and K. Pey, "Mechanism of high-k dielectric-induced breakdown of the interfacial sio 2 layer," in 2010 IEEE International Reliability Physics Symposium, 2010: IEEE, pp. 373-378, doi: 10.1109/IRPS.2010.5488800.
[24] K. McKenna and A. Shluger, "The interaction of oxygen vacancies with grain boundaries in monoclinic HfO 2," Applied Physics Letters, vol. 95, no. 22, p. 222111, 2009. [Online]. Available: https://doi.org/10.1063/1.3271184.
[25] C. H. Tung, K. L. Pey, L. J. Tang, M. Radhakrishnan, W. H. Lin, F. Palumbo, and S. Lombardo, "Percolation path and dielectric-breakdown-induced-epitaxy evolution during ultrathin gate dielectric breakdown transient," Applied Physics Letters, vol. 83, no. 11, pp. 2223-2225, 2003, doi: 10.1063/1.1611649.
[26] A. Ghetti, "Gate oxide reliability: Physical and computational models," in Predictive Simulation of Semiconductor Processing: Springer, 2004, pp. 201-258.
[27] H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, "Plasma-assisted atomic layer deposition: basics, opportunities, and challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 5, p. 050801, 2011, doi: 10.1116/1.3609974.
[28] A. Batan, A. Franquet, J. Vereecken, and F. Reniers, "Characterisation of the silicon nitride thin films deposited by plasma magnetron," Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 40, no. 3‐4, pp. 754-757, 2008, doi: https://doi.org/10.1002/sia.2730.
[29] T. Wittberg, J. Hoenigman, W. Moddeman, C. Cothern, and M. Gulett, "AES and XPS of silicon nitride films of varying refractive indices," Journal of Vacuum Science and Technology, vol. 15, no. 2, pp. 348-352, 1978, doi: https://doi.org/10.1116/1.569544.
[30] Y. S. Oh, W. S. Cho, C. S. Kim, D. S. Lim, and D. S. Cheong, "XPS investigation of Si3N4/SiC nanocomposites prepared using a commercial polymer," Journal of the American Ceramic Society, vol. 82, no. 4, pp. 1076-1078, 1999, doi: https://doi.org/10.1111/j.1151-2916.1999.tb01879.x.
[31] H.-P. Ma, H.-L. Lu, J.-H. Yang, X.-X. Li, T. Wang, W. Huang, G.-J. Yuan, F. F. Komarov, and D. W. Zhang, "Measurements of microstructural, chemical, optical, and electrical properties of silicon-oxygen-nitrogen films prepared by plasma-enhanced atomic layer deposition," Nanomaterials, vol. 8, no. 12, p. 1008, 2018, doi: https://doi.org/10.3390/nano8121008.
[32] H. Guo, X. Tan, and S. Zhang, "In situ TEM study on the microstructural evolution during electric fatigue in 0.7 Pb (Mg1/3Nb2/3) O3–0.3 PbTiO3 ceramic," Journal of Materials Research, vol. 30, no. 3, pp. 364-372, 2015. [Online]. Available: https://www.cambridge.org/core/journals/journal-of-materials-research/article/abs/in-situ-tem-study-on-the-microstructural-evolution-during-electric-fatigue-in-07pbmg13nb23o303pbtio3-ceramic/102BB07683E8FCED1314D91B66118DA3.
[33] X. Lou, "Polarization fatigue in ferroelectric thin films and related materials," Journal of Applied Physics, vol. 105, no. 2, p. 024101, 2009, doi: https://doi.org/10.1063/1.3056603.
[34] D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics," Reports on Progress in Physics, vol. 61, no. 9, p. 1267, 1998. [Online]. Available: https://iopscience.iop.org/article/10.1088/0034-4885/61/9/002/meta?casa_token=UO50gjVLDO4AAAAA:08D9eQCHrmap4re1MWQkdb5JwgBMA1OXk0S3jICU4Oj9kpaMSUPqGJHRb_cj5k597QGGc6NAqUk.
[35] Q. Huang, Z. Chen, M. J. Cabral, F. Wang, S. Zhang, F. Li, Y. Li, S. P. Ringer, H. Luo, and Y.-W. Mai, "Direct observation of nanoscale dynamics of ferroelectric degradation," Nature communications, vol. 12, no. 1, pp. 1-7, 2021. [Online]. Available: https://www.nature.com/articles/s41467-021-22355-1.
[36] N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, and J. Wang, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017: IEEE, pp. T230-T231, doi: 10.23919/VLSIT.2017.7998183.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-08-30
校外 Off-campus:開放下載的時間 available 2025-08-30

您的 IP(校外) 位址是 3.145.47.253
現在時間是 2024-04-24
論文校外開放下載的時間是 2025-08-30

Your IP address is 3.145.47.253
The current date is 2024-04-24
This thesis will be available to you on 2025-08-30.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-08-30

QR Code