Responsive image
博碩士論文 etd-0731122-144112 詳細資訊
Title page for etd-0731122-144112
論文名稱
Title
氧化還原活性多孔有機聚合物與其潛在應用
Redox-Active Porous Organic Polymers and Their Potential Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-08-25
繳交日期
Date of Submission
2022-08-31
關鍵字
Keywords
氧化還原活性、多孔有機聚合物、鈴木耦合反應、薗頭耦合反應、超級電容、鋰硫電池、二氧化碳吸附、碘捕捉
Redox-active, Porous Organic Polymers, Suzuki Coupling, Sonogashira Coupling, Supercapacitors, Lithium–Sulfur Batteries, CO2 Adsorption, Iodine Capture
統計
Statistics
本論文已被瀏覽 95 次,被下載 0
The thesis/dissertation has been browsed 95 times, has been downloaded 0 times.
中文摘要
  多孔有機聚合物(POPs)因其孔隙率、比表面積高,且具有優異的化學及熱穩定性,在各種應用方面展現了極大的潛力,例如氣體儲存與吸附、化學傳感器、能量存儲等等。本論文的第一部分將提到吾人透過鈴木偶聯及薗頭耦合反應,成功合成三種噻蒽基共軛微孔聚合物(CMPs),即Bz-Th-CMP、TPA-Th-CMP及P-Th-CMP。這些共軛微孔聚合物材料展現了高比表面積及優良熱穩定性,且在恆電流充放電(GCD)實驗中,顯示出在電流密度0.5 A g-1時, P-Th-CMP具有高達217 F g-1的電容值。此外,將P-Th-CMP應用作鋰硫電池的陰極材料,在0.2 C的充放電循環條件下,第一圈表現出高達1319 mA h g-1的電容值,在充放電循環100圈後仍保有高達913 mA h g-1的電容值。
  在第二部分中,吾人透過傅-克反應,成功合成兩種超交聯微孔聚合物(HCPs),即Fe-Bi-HCP及An-Bi-HCP。這些超交聯微孔聚合物結構中具有共軛π電子和雜原子的芳環,且有高達898 m2 g−1的比表面積,促使吾人探索他們的二氧化碳吸附及碘吸收特性。在室溫時,Fe-Bi-HCP及An-Bi-HCP具有1.64和1.24 mmol g-1的二氧化碳吸附量。而在含碘的環己烷溶液中,Fe-Bi-HCP及An-Bi-HCP具有54.7%和37.8%的碘捕捉率,且碘釋放效率高達85.1和88.6%,使這些材料具有作為可逆碘吸附劑的潛力。
Abstract
Porous Organic Polymers (POPs) have been showcased outstanding potential in many applications, including gas storage, adsorption, chemo-sensors, energy storage and conversion, attributing to their superior inherent porosity, high surface area and superior stability. In the first part of our work, we report three thianthrene-based conjugated microporous polymers (CMPs) -Bz-Th, TPA-Th, and P-Th-CMPs-through Suzuki reaction and Sonogashira reaction. These CMP materials demonstrated exceptional heat stability and high surface areas. According to galvanostatic charge/discharge experiment, the P-Th-CMP has a high specific capacitance of 217 F g−1 at the current density of 0.5 A g-1. Furthermore, the performance on the cathode of lithium–sulfur battery was also investigated. Our P-Th-CMP cathode exhibited a discharge capacity of 1319 mA h g-1 at the initial cycling, and a high specific capacity of 913 mA h g-1 at 0.2 C after 100 cycles.
In the second part, we report two hyper-crosslinked polymers (HCPs) -Fe-Bi-HCP and An-Bi-HCP-through Friedel crafts reaction. These HCPs contain aromatic rings with conjugated π-electrons and heteroatoms, and show the high surface area reaching up to 898 m2 g−1, which have prompted us to explore their CO2 uptake and iodine capture properties. At room temperature, the CO2 capacities of the Fe-Bi-HCP and An-Bi-HCP were 1.64 and 1.24 mmol g-1, respectively. As for iodine capture efficiency, Fe-Bi-HCP and An-Bi-HCP could remove 54.7 and 37.8% of iodine in iodine/cyclohexane solution. Moreover, the desorption efficiency of Fe-Bi-HCP and An-Bi-HCP were up to 85.1 and 88.6%, which make these materials suitable for reversible iodine uptake adsorbents.
目次 Table of Contents
論文審定書 i
誌謝 iii
摘要 iv
Abstract v
Content vi
Figure Captions ix
Table Captions xiv
Scheme Captions xv
Chapter 1 Introduction 1
1-1 Porous Materials 1
1-2 Conjugated Microporous Polymers, CMPs 2
1-2-1 Suzuki Coupling Reaction 4
1-2-2 Sonogashira Reaction 4
1-3 Hypercrosslinked Polymers, HCPs 4
Chapter 2 Literature Review 6
2-1 Adsorption Theory 6
2-2 Electrochemical Measurement Method 10
2-3 Supercapacitors 16
2-3-1 Introduction of Supercapacitors 16
2-3-2 Electric Double-Layer Capacitor, EDLC 18
2-3-3 Pseudocapacitors 18
2-3-3 Porous Organic Polymers Applied as Supercapacitor Electrodes 19
2-4 Lithium–Sulfur (Li–S) Batteries 20
2-4-1 Introduction of Lithium–Sulfur Batteries 20
2-4-2 Electrochemistry of Lithium–Sulfur Batteries 22
2-4-3 Porous Organic Polymers Applied as Lithium–Sulfur Battery Electrodes 24
2-5 CO2 Uptake 25
2-6 Iodine Capture 26
2-6-1 Introduction of Iodine Capture 26
2-6-2 Porous Organic Polymers Applied as Iodine Adsorbents 26
Chapter 3 Motivation and Objectives 28
Chapter 4 Experimental Section 30
4-1 Materials 30
4-2 Characterization 30
4-3 Part 1 32
4-3-1 Synthesis of Th-Br2 32
4-3-2 Synthesis of Bz-3BO 33
4-3-3 Synthesis of TPA-Br3 33
4-3-4 Synthesis of TPA-3BO 34
4-3-5 Synthesis of P-T 35
4-3-6 Synthesis of Bz-Th-CMP 36
4-3-7 Synthesis of TPA-Th-CMP 36
4-3-8 Synthesis of P-Th-CMP 37
4-3-9 Preparation of S@P-Th-CMP 38
4-3-10 Fabrication of Coin Cell 38
4-4 Part 2 40
4-4-1 Synthesis of FDI 40
4-4-2 Synthesis of ADI 40
4-4-3 Synthesis of Fe-Bi-HCP 41
4-4-4 Synthesis of An-Bi-HCP 41
Chapter 5 Results and Discussion 42
5-1 Part 1 42
5-1-1 Synthesis and Characterization of Th-CMPs 42
5-1-2 Elemental Analyses 57
5-1-3 Thermal Stability Analyses 58
5-1-4 X-Ray Diffraction Analyses 59
5-1-5 Surface Area and Porosity Analyses 59
5-1-6 Electron Microscopic Analyses 61
5-1-7 Electrochemical Analyses 62
5-1-8 Application for Lithium–Sulfur Battery 70
5-2 Part 2 77
5-2-1 Synthesis and Characterization of Bi-HCPs 77
5-2-2 Thermal Stability Analyses 84
5-2-3 Surface Area and Porosity Analyses 85
5-2-4 Electron Microscopic Analyses 86
5-2-5 Electrochemical Analyses 87
5-2-6 CO2 Uptake Capacity Analyses 91
5-2-7 Iodine Uptake Capacity Analyses 92
Chapter 6 Conclusions 96
References 98
參考文獻 References
[1] A. H. Lu and F. Schüth, Nanocasting: a versatile strategy for creating nanostructured porous materials, Advanced Materials, 2006, 18, 1793-1805.
[2] B. Zdravkov, J. Čermák, M. Šefara, and J. Janků, Pore classification in the characterization of porous materials: A perspective, Open Chemistry, 2007, 5, 385-395.
[3] M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417, 813-821.
[4] J.-S. M. Lee and A. I. Cooper, Advances in conjugated microporous polymers, Chemical Reviews, 2020,120, 2171-2214.
[5] Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chemical Society Reviews, 2013, 42, 8012-8031.
[6] N. Miyaura, K. Yamada, and A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Letters, 1979, 20, 3437-3440.
[7] K. Sonogashira, Y. Tohda, and N. Hagihara, A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Letters, 1975, 16, 4467-4470.
[8] X. Yang and A. L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Advanced Energy Materials, 2019, 9, 1900747.
[9] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 2018, 95, 197-206.
[10] B. Hsia, Materials synthesis and characterization for micro-supercapacitor applications. University of California, Berkeley, 2013.
[11] M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science, 2010, 3, 1294-1301.
[12] S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy, Nature Materials, 2017, 16, 16-22.
[13] E. A. Olivetti and J. M. Cullen, Toward a sustainable materials system, Science, 2018, 360, 1396-1398.
[14] S. Rashidi, J. A. Esfahani, and A. Rashidi, A review on the applications of porous materials in solar energy systems, Renewable and Sustainable Energy Reviews, 2017, 73, 1198-1210.
[15] C. Perego and R. Millini, Porous materials in catalysis: challenges for mesoporous materials, Chemical Society Reviews, 2013, 42, 3956-3976.
[16] Y. Li, L. Li, and J. Yu, Applications of zeolites in sustainable chemistry, Chem, 2017, 3, 928-949.
[17] F. J. Sotomayor, K. A. Cychosz, and M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies, Accounts Materials & Surface Research, 2018, 3, 34-50.
[18] K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, 1985, 57, 603-619.
[19] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 2015, 87, 1051-1069.
[20] Tsyurupa, M. P., Maslova, L. A., Andreeva, A. I., Mrachkovskaya, T. A., & Davankov, V. A, Sorption of organic compounds from aqueous media by hypercrosslinked polystyrene sorbents ‘Styrosorbrs, Reactive Polymers, 1995, 25, 69-78.
[21] Tsyurupa, M. P., and V. A. Davankov, Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review, Reactive and Functional Polymers, 2006, 66, 768-779.
[22] Liangxiao, T., & Bien, T, Research progress in hypercrosslinked microporous organic polymers, Acta Chimica Sinica, 2015, 73, 530-540.
[23] L. A. Tinker and A. J. Bard, Electrochemistry in liquid sulfur dioxide. 1. Oxidation of thianthrene, phenothiazine, and 9, 10-diphenylanthracene, Journal of the American Chemical Society, 1979, 101, 2316-2319.
[24] Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. S. Wu, X. Bao, and W. Q. Deng, Conductive microporous covalent triazine‐based framework for high‐performance electrochemical capacitive energy storage, Angewandte Chemie International Edition, 2018, 130, 8124-8128.
[25] Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, and S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, Journal of Materials Science, 2021, 56, 173-200.
[26] Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive energy storage and electric power supply using an aza‐fused π‐conjugated microporous framework, Angewandte Chemie International Edition, 2011, 123, 8912-8916.
[27] K. Sharma, A. Arora, and S. K. Tripathi, Review of supercapacitors: Materials and devices, Journal of Energy Storage, 2019, 21, 801-825.
[28] Y. Jiang and J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy & Environmental Materials, 2019, 2, 30-37.
[29] A. Y. S. Eng, V. Kumar, Y. Zhang, J. Luo, W. Wang, Y. Sun, W. Li, and Z. W. Seh, Room‐Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering, Advanced Energy Materials, 2021, 11, 2003493.
[30] A. Wild, M. Strumpf, B. Häupler, M. D. Hager, and U. S. Schubert, All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers, Advanced Energy Materials, 2017, 7, 1601415.
[31] M. G. Mohamed, S. U. Sharma, C.-H. Yang, M. M. Samy, A. A. K. Mohammed, S. V. Chaganti, J.-T. Lee, and S. Wei-Kuo, Anthraquinone-Enriched Conjugated Microporous Polymers as Organic Cathode Materials for High-Performance Lithium-Ion Batteries, ACS Applied Energy Materials, 2021, 4, 14628-14639.
[32] C. W. Kang, Y.-J. Ko, S. M. Lee, H. J. Kim, J. Choi, and S. U. Son, Carbon black nanoparticle trapping: A strategy to realize the true energy storage potential of redox-active conjugated microporous polymers, Journal of Materials Chemistry A, 2021, 9, 17978-17984.
[33] A. M. Khattak, H. Sin, Z. A. Ghazi, X. He, B. Liang, N. A. Khan, H. R. Alanagh, A. Iqbal, L. Li, and Z. Tang, Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage, Journal of Materials Chemistry A, 2018, 6, 18827-18832.
[34] M. G. Mohamed, X. Zhang, T. H. Mansoure, A. F. El-Mahdy, C.-F. Huang, M. Danko, Z. Xin, and S.-W. Kuo, Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor, Polymer, 2020, 205, 122857.
[35] M. G. Mohamed, A. EL-Mahdy, T.-S. Meng, M. M. Samy, and S.-W. Kuo, Multifunctional hypercrosslinked porous organic polymers based on tetraphenylethene and triphenylamine derivatives for high-performance dye adsorption and supercapacitor, Polymers, 2020, 12, 2426.
[36] X.-C. Li, Y. Zhang, C.-Y. Wang, Y. Wan, W.-Y. Lai, H. Pang, and W. Huang, Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors, Chemical Science, 2017, 8, 2959-2965.
[37] N. Passe-Coutrin, S. Altenor, D. Cossement, C. Jean-Marius, and S. Gaspard, Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area, Microporous and Mesoporous Materials, 2008, 111, 517-522.
[38] Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, and R. B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films, Materials Horizons, 2017, 4, 1145-1150.
[39] Z. Li, S. Gadipelli, Y. Yang, G. He, J. Guo, J. Li, Y. Lu, C. A. Howard, D. J. Brett, and I. P. Parkin, Exceptional supercapacitor performance from optimized oxidation of graphene-oxide, Energy Storage Materials, 2019, 17, 12-21.
[40] K. Sheng, Y. Sun, C. Li, W. Yuan, and G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Scientific Reports, 2012, 2, 247.
[41] T. Das and B. Verma, Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes, Polymer, 2019, 168, 61-69.
[42] Z. Weng, Y. Su, D. W. Wang, F. Li, J. Du, and H. M. Cheng, Graphene–cellulose paper flexible supercapacitors, Advanced Energy Materials, 2011, 1, 917-922.
[43] R. Xu, F. Guo, X. Cui, L. Zhang, K. Wang, and J. Wei, High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone, Journal of Materials Chemistry A, 2015, 3, 22353-22360.
[44] M. G. Mohamed, T. H. Mansoure, Y. Takashi, M. M. Samy, T. Chen, and S.-W. Kuo, Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage, Microporous and Mesoporous Materials, 2021, 328, 111505.
[45] L. Zhou, D. L. Danilov, R. A. Eichel, and P. H. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Advanced Energy Materials, 2021, 11, 2001304.
[46] S. S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions, Journal of Power Sources, 2013, 231, 153-162.
[47] X. Yang, B. Dong, H. Zhang, R. Ge, Y. Gao, and H. Zhang, Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries, RSC Advances, 2015, 5, 86137-86143.
[48] Z. Ye, Y. Jiang, L. Li, F. Wu, and R. Chen, A High‐Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries, Advanced Materials, 2020, 32, 2002168.
[49] W. Weng, S. Yuan, N. Azimi, Z. Jiang, Y. Liu, Y. Ren, A. Abouimrane, and Z. Zhang, Improved cyclability of a lithium–sulfur battery using POP–Sulfur composite materials, RSC Advances, 2014, 4, 27518-27521.
[50] K. Ding, Q. Liu, Y. Bu, K. Meng, W. Wang, D. Yuan, and Y. Wang, High surface area porous polymer frameworks: Potential host material for lithium–sulfur batteries, Journal of Alloys and Compounds, 2016, 657, 626-630.
[51] J. H. Zeng, Y. F. Wang, S. Q. Gou, L. P. Zhang, Y. Chen, J. X. Jiang, and F. Shi, Sulfur in hyper-cross-linked porous polymer as cathode in lithium–sulfur batteries with enhanced electrochemical properties, ACS Applied Materials & Interfaces, 2017, 9, 34783-34792.
[52] H. Liao, H. Ding, B. Li, X. Ai, and C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries, Journal of Materials Chemistry A, 2014, 2, 8854-8858.
[53] B. Guo, T. Ben, Z. Bi, G. M. Veith, X.-G. Sun, S. Qiu, and S. Dai, Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries, Chemical Communications, 2013, 49, 4905-4907.
[54] L. Zhou, D. L. Danilov, R. A. Eichel, and P. H. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Advanced Energy Materials, 2021, 11, 2001304.
[55] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable lithium–sulfur batteries, Chemical Reviews, 2014, 23, 11751-11787.
[56] A. Manthiram, Y. Fu, and Y. Su, Sulfur-lithium-insertion compound composite cathodes for Li-S batteries, Accounts of Chemical Research, 2013, 46, 1125-1134.
[57] R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, and F. Li, More reliable lithium‐sulfur batteries: status, solutions and prospects, Advanced Materials, 2017, 29, 1606823.
[58] Z. Li, H. B. Wu, and X. W. D. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries, Energy & Environmental Science, 2016, 9, 3061-3070.
[59] H.-J. Peng, J.-Q. Huang, and Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries, Chemical Society Reviews, 2017, 46, 5237-5288.
[60] H. J. Peng, J. Q. Huang, X. B. Cheng, and Q. Zhang, Review on high‐loading and high‐energy lithium–sulfur batteries, Advanced Energy Materials, 2017, 7, 1700260.
[61] G. Li, Z. Chen, and J. Lu, Lithium-sulfur batteries for commercial applications, Chem, 2018, 4, 3-7.
[62] H. Yuan, H. J. Peng, J. Q. Huang, and Q. Zhang, Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective, Advanced Materials Interfaces, 2019, 6, 1802046.
[63] J.-T. Wang, Y.-P. Chuang, C.-C. Wang, and J.-L. Hong, Hydrogen bonds to balance mechanical and adhesive properties of pectin/polyacrylic acid blends as efficient binders for cathode in lithium-sulfur battery, Materials Today Communications, 2022, 31, 103211.
[64] C. Deng, Z. Wang, S. Wang, and J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies, Journal of Materials Chemistry A, 2019, 7, 12381-12413.
[65] S. Rehman, K. Khan, Y. Zhao, and Y. Hou, Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives, Journal of Materials Chemistry A, 2017, 5, 3014-3038.
[66] O. Ogoke, G. Wu, X. Wang, A. Casimir, L. Ma, T. Wu, and J. Lu, Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 2017, 5, 448-469.
[67] Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, and R. Wang, Porous organic polymers for polysulfide trapping in lithium–sulfur batteries, Advanced Functional Materials, 2018, 28, 1707597.
[68] H. Bildirir, V. G. Gregoriou, A. Avgeropoulos, U. Scherf, and C. L. Chochos, Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges, Materials Horizons, 2017, 4, 546-556.
[69] N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, and A. Thomas, Trends and challenges for microporous polymers, Chemical Society Reviews, 2017, 46, 3302-3321.
[70] X. Zhan, Z. Chen, and Q. Zhang, Recent progress in two-dimensional COFs for energy-related applications, Journal of Materials Chemistry A, 2017, 5, 14463-14479.
[71] C. Zhang, R. Kong, X. Wang, Y. Xu, F. Wang, W. Ren, Y. Wang, F. Su, and J.-X. Jiang, Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage, Carbon, 2017, 114, 608-618.
[72] B. Zhang, W. Wang, L. Liang, Z. Xu, X. Li, and S. Qiao, Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting, Coordination Chemistry Reviews, 2021, 436, 213782.
[73] J. Chen, C. Du, Y. Zhang, W. Wei, L. Wan, M. Xie, and Z. Tian, Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor, Polymer, 2019, 162, 43-49.
[74] S. Liu, Z. Wang, C. Zhao, X. Huang, X. Liang, X. Wang, S. Lu, and R. Scherpbier, Effects of early comprehensive interventions on child neurodevelopment in poor rural areas of China: a moderated mediation analysis, Public Health, 2018, 159, 116-122.
[75] S. K. Kaverlavani, S. Moosavifard, and A. Bakouei, Designing graphene-wrapped nanoporous CuCo 2 O 4 hollow spheres electrodes for high-performance asymmetric supercapacitors, Journal of Materials Chemistry A, 2017, 5, 14301-14309.
[76] Y. Yao, C. Ma, J. Wang, W. Qiao, L. Ling, and D. Long, Rational design of high-surface-area carbon nanotube/microporous carbon core–shell nanocomposites for supercapacitor electrodes, ACS Applied Materials & Interfaces, 2015, 7, 4817-4825.
[77] U. Acharya, P. Bober, M. Trchová, A. Zhigunov, J. Stejskal, and J. Pfleger, Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite, Polymer, 2018, 150, 130-137.
[78] Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured conductive polymers for advanced energy storage, Chemical Society Reviews, 2015, 44, 6684-6696.
[79] H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, and Q. Zhang, Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries, Angewandte Chemie International Edition, 2016, 55, 12990-12995.
[80] M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo, L. Mai, and G. Liu, Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery, Nano Energy, 2017, 38, 82-90.
[81] J. J. Griebel, R. S. Glass, K. Char, and J. Pyun, Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense, Progress in Polymer Science, 2016, 58, 90-125.
[82] X. Tao, X. Chen, Y. Xia, H. Huang, Y. Gan, R. Wu, and F. Chen, Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 2013, 1, 3295-3301.
[83] B. Zhang, X. Qin, G. Li, and X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, 2010, 3, 1531-1537.
[84] L. Li, G. Ruan, Z. Peng, Y. Yang, H. Fei, A.-R. O. Raji, E. L. Samuel, and J. M. Tour, Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes, ACS Applied Materials & Interfaces, 2014, 6, 15033-15039.
[85] K. Li, B. Wang, D. Su, J. Park, H. Ahn, and G. Wang, Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique, Journal of Power Sources, 2012, 202, 389-393.
[86] D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, and W.-C. Li, High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery, ACS Applied Materials & Interfaces, 2013, 5, 2208-2213.
[87] A. I. Cooper, Conjugated microporous polymers, Advanced Materials, 2009, 21, 1291-1295.
[88] L. Chen, Y. Honsho, S. Seki, and D. Jiang, Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna, Journal of the American Chemical Society, 2010, 132, 6742-6748.
[89] L. Chen, Y. Yang, and D. Jiang, CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers, Journal of the American Chemical Society, 2010, 132, 9138-9143.
[90] Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive energy storage and electric power supply using an aza‐fused π‐conjugated microporous framework, Angewandte Chemie International Edition, 2011, 123, 8912-8916.
[91] F. Xu, X. Chen, Z. Tang, D. Wu, R. Fu, and D. Jiang, Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage, Chemical Communications, 2014, 50, 4788-4790.
[92] A. Bhunia, V. Vasylyeva, and C. Janiak, From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities, Chemical Communications, 2013, 49, 3961-3963.
[93] J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. Jones, Y. Z. Khimyak, and A. I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks, Journal of the American Chemical Society, 2008, 130, 7710-7720.
[94] L. Wang, Y. Wan, Y. Ding, S. Wu, Y. Zhang, X. Zhang, G. Zhang, Y. Xiong, X. Wu, and J. Yang, Conjugated microporous polymer nanosheets for overall water splitting using visible light, Advanced Materials, 2017, 29, 1702428.
[95] A. Mukhtar, S. Saqib, N. B. Mellon, S. Rafiq, M. Babar, S. Ullah, N. Muhammad, A. L. Khan, M. Ayoub, and M. Ibrahim, A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels, Journal of Cleaner Production, 2020, 277, 123999.
[96] P. Xiao and Y. Xu, Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications, Journal of Materials Chemistry A, 2018, 6, 21676-21695.
[97] Winter, M.; Brodd, R. J., "What are batteries, fuel cells, and supercapacitors ?", Chemical Reviews, 2004, 104, 4245-4270.
[98] Huang, Z. H.; Liu, T. Y.; Song, Y.; Li, Y.; Liu, X. X., "Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon", Nanoscale, 2017, 9, 13119-13127.
[99] Snook, G. A.; Kao, P.; Best, A. S., "Conducting-polymer-based supercapacitor devices and electrodes", Journal of Power Sources, 2011, 196, 1-12.
[100] Halder, A.; Ghosh, M.; Khayum, M. A.; Bera, S.; Addicoat, M.; Sasmal, H. S.; Karak, S.; Kurungot, S.; Banerjee, R., "Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors", Journal of the American Chemical Society, 2018, 140, 10941-10945.
[101] Samy, M. M.; Mohamed, M. G.; El-Mahdy, A. F. M.; Mansoure, T. H.; Wu, K. C.; Kuo, S. W., "High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes", ACS Applied Materials & Interfaces, 2021, 13, 51906-51916.
[102] F. A. Permatasari, M. A. Irham, S. Z. Bisri, and F. Iskandar, Carbon-based quantum dots for supercapacitors: Recent advances and future challenges, Nanomaterials, 2021,11, 91.
[103] X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature Materials, 2009, 8, 500-506.
[104] H. Liao, H. Ding, B. Li, X. Ai, and C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries, Journal of Materials Chemistry A, 2014, 2, 8854-8858.
[105] H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai, and C. Wang, A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries, Journal of Materials Chemistry A, 2016, 4, 7416-7421.
[106] S. N. Talapaneni, T. H. Hwang, S. H. Je, O. Buyukcakir, J. W. Choi, and A. Coskun, Elemental‐sulfur‐mediated facile synthesis of a covalent triazine framework for high‐performance lithium–sulfur batteries, Angewandte Chemie International Edition, 2016, 55, 3106-3111.
[107] Q. Pang, X. Liang, C. Y. Kwok, and L. F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nature Energy, 2016, 1, 16132.
[108] N. Baig, S. Shetty, S. Al-Mousawi, and B. Alameddine, Conjugated microporous polymers using a copper-catalyzed [4+2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption, Polymer Chemistry, 2021, 12, 2282-2292.
[109] S. Wang, Y. Liu, Y. Ye, X. Meng, J. Du, X. Song, and Z. Liang, Ultrahigh volatile iodine capture by conjugated microporous polymer based on N, N, N′, N′-tetraphenyl-1, 4-phenylenediamine, Polymer Chemistry, 2019, 10, 2608-2615.
[110] Q.-Q. Dang, X.-M. Wang, Y.-F. Zhan, and X.-M. Zhang, An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake, Polymer Chemistry, 2016, 7, 643-647.
[111] Z. Yan, Y. Yuan, Y. Tian, D. Zhang, and G. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angewandte Chemie International Edition, 2015, 127, 12924-12928.
[112] X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, and C. Xia, Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks, Chemistry of Materials, 2018, 30, 2299-2308.
[113] M. Li, H. Zhao, and Z.-Y. Lu, Highly efficient, reversible iodine capture and exceptional uptake of amines in viologen-based porous organic polymers, RSC Advances, 2020, 10, 20460-20466.
[114] B. J. Riley, J. D. Vienna, D. M. Strachan, J. S. McCloy, and J. L. Jerden Jr, Materials and processes for the effective capture and immobilization of radioiodine: A review, Journal of Nuclear Materials, 2016, 470, 307-326.
[115] K. W. Chapman, P. J. Chupas, and T. M. Nenoff, Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation, Journal of the American Chemical Society, 2010, 132, 8897-8899.
[116] D. Dai, J. Yang, Y. C. Zou, J. R. Wu, L. L. Tan, Y. Wang, B. Li, T. Lu, B. Wang, and Y. W. Yang, Macrocyclic arenes‐based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption, Angewandte Chemie, 2021, 133, 9049-9057.
[117] L. Xie, Z. Zheng, Q. Lin, H. Zhou, X. Ji, J. L. Sessler, and H. Wang, Calix [4] pyrrole‐based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water, Angewandte Chemie, 2022, 134, 202113724.
[118] D. Gambhir, M. Venkateswarulu, T. Verma, and R. R. Koner, High adsorption capacity of an sp2/sp3-N-rich polymeric network: from molecular iodine capture to catalysis, ACS Applied Polymer Materials, 2020, 2, 152-158.
[119] Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E.; Basha, M.; Qasem, N. A. A.; Peedikakkal, A.; Laoui, T.; Ali, M., "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review", Applied Energy, 2016, 161, 225-255.
[120] Han, S.-J.; Yoo, M.; Kim, D.-W.; Wee, J.-H., "Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent", Energy & Fuels, 2011, 25, 3825-3834.
[121] Choi, Y. S.; Im, J.; Jeong, J. K.; Hong, S. Y.; Jang, H. G.; Cheong, M.; Lee, J. S.; Kim, H. S., "CO2 absorption and desorption in an aqueous solution of heavily hindered alkanolamine: Structural elucidation of CO2-containing species", Environmental Science & Technology, 2014, 48, 4163-4170.
[122] Tian, W.; Zhang, H.; Sun, H.; Suvorova, A.; Saunders, M.; Tade, M.; Wang, S., "Heteroatom (N or N‐S)‐doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications", Advanced Functional Materials, 2016, 26, 8651-8661.
[123] Demir, M.; Tessema, T.-D.; Farghaly, A. A.; Nyankson, E.; Saraswat, S. K.; Aksoy, B.; Islamoglu, T.; Collinson, M. M.; El-Kaderi, H. M.; Gupta, R. B., "Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications", International Journal of Energy Research, 2018, 42, 2686-2700.
[124] Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, and X. Li, Novel ferrocene-based nanoporous organic polymers for clean energy application, RSC Advances, 2015, 5, 8933-8937.
[125] Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang, A. Li, and W. Deng, Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake, Journal of Materials Chemistry A, 2015, 3, 87-91.
[126] Y. Cui, J. Du, Y. Liu, Y. Yu, S. Wang, H. Pang, Z. Liang, and J. Yu, Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger's base for CO2 adsorption, catalysis and sensing, Polymer Chemistry, 2018, 9, 2643-2649.




電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-08-31
校外 Off-campus:開放下載的時間 available 2024-08-31

您的 IP(校外) 位址是 3.83.81.42
現在時間是 2024-03-29
論文校外開放下載的時間是 2024-08-31

Your IP address is 3.83.81.42
The current date is 2024-03-29
This thesis will be available to you on 2024-08-31.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2024-08-31

QR Code