論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
氧化還原活性多孔有機聚合物與其潛在應用 Redox-Active Porous Organic Polymers and Their Potential Applications |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
129 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-08-25 |
繳交日期 Date of Submission |
2022-08-31 |
關鍵字 Keywords |
氧化還原活性、多孔有機聚合物、鈴木耦合反應、薗頭耦合反應、超級電容、鋰硫電池、二氧化碳吸附、碘捕捉 Redox-active, Porous Organic Polymers, Suzuki Coupling, Sonogashira Coupling, Supercapacitors, Lithium–Sulfur Batteries, CO2 Adsorption, Iodine Capture |
||
統計 Statistics |
本論文已被瀏覽 126 次,被下載 0 次 The thesis/dissertation has been browsed 126 times, has been downloaded 0 times. |
中文摘要 |
多孔有機聚合物(POPs)因其孔隙率、比表面積高,且具有優異的化學及熱穩定性,在各種應用方面展現了極大的潛力,例如氣體儲存與吸附、化學傳感器、能量存儲等等。本論文的第一部分將提到吾人透過鈴木偶聯及薗頭耦合反應,成功合成三種噻蒽基共軛微孔聚合物(CMPs),即Bz-Th-CMP、TPA-Th-CMP及P-Th-CMP。這些共軛微孔聚合物材料展現了高比表面積及優良熱穩定性,且在恆電流充放電(GCD)實驗中,顯示出在電流密度0.5 A g-1時, P-Th-CMP具有高達217 F g-1的電容值。此外,將P-Th-CMP應用作鋰硫電池的陰極材料,在0.2 C的充放電循環條件下,第一圈表現出高達1319 mA h g-1的電容值,在充放電循環100圈後仍保有高達913 mA h g-1的電容值。 在第二部分中,吾人透過傅-克反應,成功合成兩種超交聯微孔聚合物(HCPs),即Fe-Bi-HCP及An-Bi-HCP。這些超交聯微孔聚合物結構中具有共軛π電子和雜原子的芳環,且有高達898 m2 g−1的比表面積,促使吾人探索他們的二氧化碳吸附及碘吸收特性。在室溫時,Fe-Bi-HCP及An-Bi-HCP具有1.64和1.24 mmol g-1的二氧化碳吸附量。而在含碘的環己烷溶液中,Fe-Bi-HCP及An-Bi-HCP具有54.7%和37.8%的碘捕捉率,且碘釋放效率高達85.1和88.6%,使這些材料具有作為可逆碘吸附劑的潛力。 |
Abstract |
Porous Organic Polymers (POPs) have been showcased outstanding potential in many applications, including gas storage, adsorption, chemo-sensors, energy storage and conversion, attributing to their superior inherent porosity, high surface area and superior stability. In the first part of our work, we report three thianthrene-based conjugated microporous polymers (CMPs) -Bz-Th, TPA-Th, and P-Th-CMPs-through Suzuki reaction and Sonogashira reaction. These CMP materials demonstrated exceptional heat stability and high surface areas. According to galvanostatic charge/discharge experiment, the P-Th-CMP has a high specific capacitance of 217 F g−1 at the current density of 0.5 A g-1. Furthermore, the performance on the cathode of lithium–sulfur battery was also investigated. Our P-Th-CMP cathode exhibited a discharge capacity of 1319 mA h g-1 at the initial cycling, and a high specific capacity of 913 mA h g-1 at 0.2 C after 100 cycles. In the second part, we report two hyper-crosslinked polymers (HCPs) -Fe-Bi-HCP and An-Bi-HCP-through Friedel crafts reaction. These HCPs contain aromatic rings with conjugated π-electrons and heteroatoms, and show the high surface area reaching up to 898 m2 g−1, which have prompted us to explore their CO2 uptake and iodine capture properties. At room temperature, the CO2 capacities of the Fe-Bi-HCP and An-Bi-HCP were 1.64 and 1.24 mmol g-1, respectively. As for iodine capture efficiency, Fe-Bi-HCP and An-Bi-HCP could remove 54.7 and 37.8% of iodine in iodine/cyclohexane solution. Moreover, the desorption efficiency of Fe-Bi-HCP and An-Bi-HCP were up to 85.1 and 88.6%, which make these materials suitable for reversible iodine uptake adsorbents. |
目次 Table of Contents |
論文審定書 i 誌謝 iii 摘要 iv Abstract v Content vi Figure Captions ix Table Captions xiv Scheme Captions xv Chapter 1 Introduction 1 1-1 Porous Materials 1 1-2 Conjugated Microporous Polymers, CMPs 2 1-2-1 Suzuki Coupling Reaction 4 1-2-2 Sonogashira Reaction 4 1-3 Hypercrosslinked Polymers, HCPs 4 Chapter 2 Literature Review 6 2-1 Adsorption Theory 6 2-2 Electrochemical Measurement Method 10 2-3 Supercapacitors 16 2-3-1 Introduction of Supercapacitors 16 2-3-2 Electric Double-Layer Capacitor, EDLC 18 2-3-3 Pseudocapacitors 18 2-3-3 Porous Organic Polymers Applied as Supercapacitor Electrodes 19 2-4 Lithium–Sulfur (Li–S) Batteries 20 2-4-1 Introduction of Lithium–Sulfur Batteries 20 2-4-2 Electrochemistry of Lithium–Sulfur Batteries 22 2-4-3 Porous Organic Polymers Applied as Lithium–Sulfur Battery Electrodes 24 2-5 CO2 Uptake 25 2-6 Iodine Capture 26 2-6-1 Introduction of Iodine Capture 26 2-6-2 Porous Organic Polymers Applied as Iodine Adsorbents 26 Chapter 3 Motivation and Objectives 28 Chapter 4 Experimental Section 30 4-1 Materials 30 4-2 Characterization 30 4-3 Part 1 32 4-3-1 Synthesis of Th-Br2 32 4-3-2 Synthesis of Bz-3BO 33 4-3-3 Synthesis of TPA-Br3 33 4-3-4 Synthesis of TPA-3BO 34 4-3-5 Synthesis of P-T 35 4-3-6 Synthesis of Bz-Th-CMP 36 4-3-7 Synthesis of TPA-Th-CMP 36 4-3-8 Synthesis of P-Th-CMP 37 4-3-9 Preparation of S@P-Th-CMP 38 4-3-10 Fabrication of Coin Cell 38 4-4 Part 2 40 4-4-1 Synthesis of FDI 40 4-4-2 Synthesis of ADI 40 4-4-3 Synthesis of Fe-Bi-HCP 41 4-4-4 Synthesis of An-Bi-HCP 41 Chapter 5 Results and Discussion 42 5-1 Part 1 42 5-1-1 Synthesis and Characterization of Th-CMPs 42 5-1-2 Elemental Analyses 57 5-1-3 Thermal Stability Analyses 58 5-1-4 X-Ray Diffraction Analyses 59 5-1-5 Surface Area and Porosity Analyses 59 5-1-6 Electron Microscopic Analyses 61 5-1-7 Electrochemical Analyses 62 5-1-8 Application for Lithium–Sulfur Battery 70 5-2 Part 2 77 5-2-1 Synthesis and Characterization of Bi-HCPs 77 5-2-2 Thermal Stability Analyses 84 5-2-3 Surface Area and Porosity Analyses 85 5-2-4 Electron Microscopic Analyses 86 5-2-5 Electrochemical Analyses 87 5-2-6 CO2 Uptake Capacity Analyses 91 5-2-7 Iodine Uptake Capacity Analyses 92 Chapter 6 Conclusions 96 References 98 |
參考文獻 References |
[1] A. H. Lu and F. Schüth, Nanocasting: a versatile strategy for creating nanostructured porous materials, Advanced Materials, 2006, 18, 1793-1805. [2] B. Zdravkov, J. Čermák, M. Šefara, and J. Janků, Pore classification in the characterization of porous materials: A perspective, Open Chemistry, 2007, 5, 385-395. [3] M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417, 813-821. [4] J.-S. M. Lee and A. I. Cooper, Advances in conjugated microporous polymers, Chemical Reviews, 2020,120, 2171-2214. [5] Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chemical Society Reviews, 2013, 42, 8012-8031. [6] N. Miyaura, K. Yamada, and A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Letters, 1979, 20, 3437-3440. [7] K. Sonogashira, Y. Tohda, and N. Hagihara, A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Letters, 1975, 16, 4467-4470. [8] X. Yang and A. L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Advanced Energy Materials, 2019, 9, 1900747. [9] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 2018, 95, 197-206. [10] B. Hsia, Materials synthesis and characterization for micro-supercapacitor applications. University of California, Berkeley, 2013. [11] M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science, 2010, 3, 1294-1301. [12] S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy, Nature Materials, 2017, 16, 16-22. [13] E. A. Olivetti and J. M. Cullen, Toward a sustainable materials system, Science, 2018, 360, 1396-1398. [14] S. Rashidi, J. A. Esfahani, and A. Rashidi, A review on the applications of porous materials in solar energy systems, Renewable and Sustainable Energy Reviews, 2017, 73, 1198-1210. [15] C. Perego and R. Millini, Porous materials in catalysis: challenges for mesoporous materials, Chemical Society Reviews, 2013, 42, 3956-3976. [16] Y. Li, L. Li, and J. Yu, Applications of zeolites in sustainable chemistry, Chem, 2017, 3, 928-949. [17] F. J. Sotomayor, K. A. Cychosz, and M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies, Accounts Materials & Surface Research, 2018, 3, 34-50. [18] K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, 1985, 57, 603-619. [19] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 2015, 87, 1051-1069. [20] Tsyurupa, M. P., Maslova, L. A., Andreeva, A. I., Mrachkovskaya, T. A., & Davankov, V. A, Sorption of organic compounds from aqueous media by hypercrosslinked polystyrene sorbents ‘Styrosorbrs, Reactive Polymers, 1995, 25, 69-78. [21] Tsyurupa, M. P., and V. A. Davankov, Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review, Reactive and Functional Polymers, 2006, 66, 768-779. [22] Liangxiao, T., & Bien, T, Research progress in hypercrosslinked microporous organic polymers, Acta Chimica Sinica, 2015, 73, 530-540. [23] L. A. Tinker and A. J. Bard, Electrochemistry in liquid sulfur dioxide. 1. Oxidation of thianthrene, phenothiazine, and 9, 10-diphenylanthracene, Journal of the American Chemical Society, 1979, 101, 2316-2319. [24] Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. S. Wu, X. Bao, and W. Q. Deng, Conductive microporous covalent triazine‐based framework for high‐performance electrochemical capacitive energy storage, Angewandte Chemie International Edition, 2018, 130, 8124-8128. [25] Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, and S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, Journal of Materials Science, 2021, 56, 173-200. [26] Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive energy storage and electric power supply using an aza‐fused π‐conjugated microporous framework, Angewandte Chemie International Edition, 2011, 123, 8912-8916. [27] K. Sharma, A. Arora, and S. K. Tripathi, Review of supercapacitors: Materials and devices, Journal of Energy Storage, 2019, 21, 801-825. [28] Y. Jiang and J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy & Environmental Materials, 2019, 2, 30-37. [29] A. Y. S. Eng, V. Kumar, Y. Zhang, J. Luo, W. Wang, Y. Sun, W. Li, and Z. W. Seh, Room‐Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering, Advanced Energy Materials, 2021, 11, 2003493. [30] A. Wild, M. Strumpf, B. Häupler, M. D. Hager, and U. S. Schubert, All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers, Advanced Energy Materials, 2017, 7, 1601415. [31] M. G. Mohamed, S. U. Sharma, C.-H. Yang, M. M. Samy, A. A. K. Mohammed, S. V. Chaganti, J.-T. Lee, and S. Wei-Kuo, Anthraquinone-Enriched Conjugated Microporous Polymers as Organic Cathode Materials for High-Performance Lithium-Ion Batteries, ACS Applied Energy Materials, 2021, 4, 14628-14639. [32] C. W. Kang, Y.-J. Ko, S. M. Lee, H. J. Kim, J. Choi, and S. U. Son, Carbon black nanoparticle trapping: A strategy to realize the true energy storage potential of redox-active conjugated microporous polymers, Journal of Materials Chemistry A, 2021, 9, 17978-17984. [33] A. M. Khattak, H. Sin, Z. A. Ghazi, X. He, B. Liang, N. A. Khan, H. R. Alanagh, A. Iqbal, L. Li, and Z. Tang, Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage, Journal of Materials Chemistry A, 2018, 6, 18827-18832. [34] M. G. Mohamed, X. Zhang, T. H. Mansoure, A. F. El-Mahdy, C.-F. Huang, M. Danko, Z. Xin, and S.-W. Kuo, Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor, Polymer, 2020, 205, 122857. [35] M. G. Mohamed, A. EL-Mahdy, T.-S. Meng, M. M. Samy, and S.-W. Kuo, Multifunctional hypercrosslinked porous organic polymers based on tetraphenylethene and triphenylamine derivatives for high-performance dye adsorption and supercapacitor, Polymers, 2020, 12, 2426. [36] X.-C. Li, Y. Zhang, C.-Y. Wang, Y. Wan, W.-Y. Lai, H. Pang, and W. Huang, Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors, Chemical Science, 2017, 8, 2959-2965. [37] N. Passe-Coutrin, S. Altenor, D. Cossement, C. Jean-Marius, and S. Gaspard, Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area, Microporous and Mesoporous Materials, 2008, 111, 517-522. [38] Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, and R. B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films, Materials Horizons, 2017, 4, 1145-1150. [39] Z. Li, S. Gadipelli, Y. Yang, G. He, J. Guo, J. Li, Y. Lu, C. A. Howard, D. J. Brett, and I. P. Parkin, Exceptional supercapacitor performance from optimized oxidation of graphene-oxide, Energy Storage Materials, 2019, 17, 12-21. [40] K. Sheng, Y. Sun, C. Li, W. Yuan, and G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Scientific Reports, 2012, 2, 247. [41] T. Das and B. Verma, Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes, Polymer, 2019, 168, 61-69. [42] Z. Weng, Y. Su, D. W. Wang, F. Li, J. Du, and H. M. Cheng, Graphene–cellulose paper flexible supercapacitors, Advanced Energy Materials, 2011, 1, 917-922. [43] R. Xu, F. Guo, X. Cui, L. Zhang, K. Wang, and J. Wei, High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone, Journal of Materials Chemistry A, 2015, 3, 22353-22360. [44] M. G. Mohamed, T. H. Mansoure, Y. Takashi, M. M. Samy, T. Chen, and S.-W. Kuo, Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage, Microporous and Mesoporous Materials, 2021, 328, 111505. [45] L. Zhou, D. L. Danilov, R. A. Eichel, and P. H. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Advanced Energy Materials, 2021, 11, 2001304. [46] S. S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions, Journal of Power Sources, 2013, 231, 153-162. [47] X. Yang, B. Dong, H. Zhang, R. Ge, Y. Gao, and H. Zhang, Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries, RSC Advances, 2015, 5, 86137-86143. [48] Z. Ye, Y. Jiang, L. Li, F. Wu, and R. Chen, A High‐Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries, Advanced Materials, 2020, 32, 2002168. [49] W. Weng, S. Yuan, N. Azimi, Z. Jiang, Y. Liu, Y. Ren, A. Abouimrane, and Z. Zhang, Improved cyclability of a lithium–sulfur battery using POP–Sulfur composite materials, RSC Advances, 2014, 4, 27518-27521. [50] K. Ding, Q. Liu, Y. Bu, K. Meng, W. Wang, D. Yuan, and Y. Wang, High surface area porous polymer frameworks: Potential host material for lithium–sulfur batteries, Journal of Alloys and Compounds, 2016, 657, 626-630. [51] J. H. Zeng, Y. F. Wang, S. Q. Gou, L. P. Zhang, Y. Chen, J. X. Jiang, and F. Shi, Sulfur in hyper-cross-linked porous polymer as cathode in lithium–sulfur batteries with enhanced electrochemical properties, ACS Applied Materials & Interfaces, 2017, 9, 34783-34792. [52] H. Liao, H. Ding, B. Li, X. Ai, and C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries, Journal of Materials Chemistry A, 2014, 2, 8854-8858. [53] B. Guo, T. Ben, Z. Bi, G. M. Veith, X.-G. Sun, S. Qiu, and S. Dai, Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries, Chemical Communications, 2013, 49, 4905-4907. [54] L. Zhou, D. L. Danilov, R. A. Eichel, and P. H. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Advanced Energy Materials, 2021, 11, 2001304. [55] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable lithium–sulfur batteries, Chemical Reviews, 2014, 23, 11751-11787. [56] A. Manthiram, Y. Fu, and Y. Su, Sulfur-lithium-insertion compound composite cathodes for Li-S batteries, Accounts of Chemical Research, 2013, 46, 1125-1134. [57] R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, and F. Li, More reliable lithium‐sulfur batteries: status, solutions and prospects, Advanced Materials, 2017, 29, 1606823. [58] Z. Li, H. B. Wu, and X. W. D. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries, Energy & Environmental Science, 2016, 9, 3061-3070. [59] H.-J. Peng, J.-Q. Huang, and Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries, Chemical Society Reviews, 2017, 46, 5237-5288. [60] H. J. Peng, J. Q. Huang, X. B. Cheng, and Q. Zhang, Review on high‐loading and high‐energy lithium–sulfur batteries, Advanced Energy Materials, 2017, 7, 1700260. [61] G. Li, Z. Chen, and J. Lu, Lithium-sulfur batteries for commercial applications, Chem, 2018, 4, 3-7. [62] H. Yuan, H. J. Peng, J. Q. Huang, and Q. Zhang, Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective, Advanced Materials Interfaces, 2019, 6, 1802046. [63] J.-T. Wang, Y.-P. Chuang, C.-C. Wang, and J.-L. Hong, Hydrogen bonds to balance mechanical and adhesive properties of pectin/polyacrylic acid blends as efficient binders for cathode in lithium-sulfur battery, Materials Today Communications, 2022, 31, 103211. [64] C. Deng, Z. Wang, S. Wang, and J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies, Journal of Materials Chemistry A, 2019, 7, 12381-12413. [65] S. Rehman, K. Khan, Y. Zhao, and Y. Hou, Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives, Journal of Materials Chemistry A, 2017, 5, 3014-3038. [66] O. Ogoke, G. Wu, X. Wang, A. Casimir, L. Ma, T. Wu, and J. Lu, Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 2017, 5, 448-469. [67] Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, and R. Wang, Porous organic polymers for polysulfide trapping in lithium–sulfur batteries, Advanced Functional Materials, 2018, 28, 1707597. [68] H. Bildirir, V. G. Gregoriou, A. Avgeropoulos, U. Scherf, and C. L. Chochos, Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges, Materials Horizons, 2017, 4, 546-556. [69] N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, and A. Thomas, Trends and challenges for microporous polymers, Chemical Society Reviews, 2017, 46, 3302-3321. [70] X. Zhan, Z. Chen, and Q. Zhang, Recent progress in two-dimensional COFs for energy-related applications, Journal of Materials Chemistry A, 2017, 5, 14463-14479. [71] C. Zhang, R. Kong, X. Wang, Y. Xu, F. Wang, W. Ren, Y. Wang, F. Su, and J.-X. Jiang, Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage, Carbon, 2017, 114, 608-618. [72] B. Zhang, W. Wang, L. Liang, Z. Xu, X. Li, and S. Qiao, Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting, Coordination Chemistry Reviews, 2021, 436, 213782. [73] J. Chen, C. Du, Y. Zhang, W. Wei, L. Wan, M. Xie, and Z. Tian, Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor, Polymer, 2019, 162, 43-49. [74] S. Liu, Z. Wang, C. Zhao, X. Huang, X. Liang, X. Wang, S. Lu, and R. Scherpbier, Effects of early comprehensive interventions on child neurodevelopment in poor rural areas of China: a moderated mediation analysis, Public Health, 2018, 159, 116-122. [75] S. K. Kaverlavani, S. Moosavifard, and A. Bakouei, Designing graphene-wrapped nanoporous CuCo 2 O 4 hollow spheres electrodes for high-performance asymmetric supercapacitors, Journal of Materials Chemistry A, 2017, 5, 14301-14309. [76] Y. Yao, C. Ma, J. Wang, W. Qiao, L. Ling, and D. Long, Rational design of high-surface-area carbon nanotube/microporous carbon core–shell nanocomposites for supercapacitor electrodes, ACS Applied Materials & Interfaces, 2015, 7, 4817-4825. [77] U. Acharya, P. Bober, M. Trchová, A. Zhigunov, J. Stejskal, and J. Pfleger, Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite, Polymer, 2018, 150, 130-137. [78] Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured conductive polymers for advanced energy storage, Chemical Society Reviews, 2015, 44, 6684-6696. [79] H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, and Q. Zhang, Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries, Angewandte Chemie International Edition, 2016, 55, 12990-12995. [80] M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo, L. Mai, and G. Liu, Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery, Nano Energy, 2017, 38, 82-90. [81] J. J. Griebel, R. S. Glass, K. Char, and J. Pyun, Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense, Progress in Polymer Science, 2016, 58, 90-125. [82] X. Tao, X. Chen, Y. Xia, H. Huang, Y. Gan, R. Wu, and F. Chen, Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 2013, 1, 3295-3301. [83] B. Zhang, X. Qin, G. Li, and X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, 2010, 3, 1531-1537. [84] L. Li, G. Ruan, Z. Peng, Y. Yang, H. Fei, A.-R. O. Raji, E. L. Samuel, and J. M. Tour, Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes, ACS Applied Materials & Interfaces, 2014, 6, 15033-15039. [85] K. Li, B. Wang, D. Su, J. Park, H. Ahn, and G. Wang, Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique, Journal of Power Sources, 2012, 202, 389-393. [86] D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, and W.-C. Li, High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery, ACS Applied Materials & Interfaces, 2013, 5, 2208-2213. [87] A. I. Cooper, Conjugated microporous polymers, Advanced Materials, 2009, 21, 1291-1295. [88] L. Chen, Y. Honsho, S. Seki, and D. Jiang, Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna, Journal of the American Chemical Society, 2010, 132, 6742-6748. [89] L. Chen, Y. Yang, and D. Jiang, CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers, Journal of the American Chemical Society, 2010, 132, 9138-9143. [90] Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive energy storage and electric power supply using an aza‐fused π‐conjugated microporous framework, Angewandte Chemie International Edition, 2011, 123, 8912-8916. [91] F. Xu, X. Chen, Z. Tang, D. Wu, R. Fu, and D. Jiang, Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage, Chemical Communications, 2014, 50, 4788-4790. [92] A. Bhunia, V. Vasylyeva, and C. Janiak, From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities, Chemical Communications, 2013, 49, 3961-3963. [93] J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. Jones, Y. Z. Khimyak, and A. I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks, Journal of the American Chemical Society, 2008, 130, 7710-7720. [94] L. Wang, Y. Wan, Y. Ding, S. Wu, Y. Zhang, X. Zhang, G. Zhang, Y. Xiong, X. Wu, and J. Yang, Conjugated microporous polymer nanosheets for overall water splitting using visible light, Advanced Materials, 2017, 29, 1702428. [95] A. Mukhtar, S. Saqib, N. B. Mellon, S. Rafiq, M. Babar, S. Ullah, N. Muhammad, A. L. Khan, M. Ayoub, and M. Ibrahim, A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels, Journal of Cleaner Production, 2020, 277, 123999. [96] P. Xiao and Y. Xu, Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications, Journal of Materials Chemistry A, 2018, 6, 21676-21695. [97] Winter, M.; Brodd, R. J., "What are batteries, fuel cells, and supercapacitors ?", Chemical Reviews, 2004, 104, 4245-4270. [98] Huang, Z. H.; Liu, T. Y.; Song, Y.; Li, Y.; Liu, X. X., "Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon", Nanoscale, 2017, 9, 13119-13127. [99] Snook, G. A.; Kao, P.; Best, A. S., "Conducting-polymer-based supercapacitor devices and electrodes", Journal of Power Sources, 2011, 196, 1-12. [100] Halder, A.; Ghosh, M.; Khayum, M. A.; Bera, S.; Addicoat, M.; Sasmal, H. S.; Karak, S.; Kurungot, S.; Banerjee, R., "Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors", Journal of the American Chemical Society, 2018, 140, 10941-10945. [101] Samy, M. M.; Mohamed, M. G.; El-Mahdy, A. F. M.; Mansoure, T. H.; Wu, K. C.; Kuo, S. W., "High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes", ACS Applied Materials & Interfaces, 2021, 13, 51906-51916. [102] F. A. Permatasari, M. A. Irham, S. Z. Bisri, and F. Iskandar, Carbon-based quantum dots for supercapacitors: Recent advances and future challenges, Nanomaterials, 2021,11, 91. [103] X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature Materials, 2009, 8, 500-506. [104] H. Liao, H. Ding, B. Li, X. Ai, and C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries, Journal of Materials Chemistry A, 2014, 2, 8854-8858. [105] H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai, and C. Wang, A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries, Journal of Materials Chemistry A, 2016, 4, 7416-7421. [106] S. N. Talapaneni, T. H. Hwang, S. H. Je, O. Buyukcakir, J. W. Choi, and A. Coskun, Elemental‐sulfur‐mediated facile synthesis of a covalent triazine framework for high‐performance lithium–sulfur batteries, Angewandte Chemie International Edition, 2016, 55, 3106-3111. [107] Q. Pang, X. Liang, C. Y. Kwok, and L. F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nature Energy, 2016, 1, 16132. [108] N. Baig, S. Shetty, S. Al-Mousawi, and B. Alameddine, Conjugated microporous polymers using a copper-catalyzed [4+2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption, Polymer Chemistry, 2021, 12, 2282-2292. [109] S. Wang, Y. Liu, Y. Ye, X. Meng, J. Du, X. Song, and Z. Liang, Ultrahigh volatile iodine capture by conjugated microporous polymer based on N, N, N′, N′-tetraphenyl-1, 4-phenylenediamine, Polymer Chemistry, 2019, 10, 2608-2615. [110] Q.-Q. Dang, X.-M. Wang, Y.-F. Zhan, and X.-M. Zhang, An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake, Polymer Chemistry, 2016, 7, 643-647. [111] Z. Yan, Y. Yuan, Y. Tian, D. Zhang, and G. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angewandte Chemie International Edition, 2015, 127, 12924-12928. [112] X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, and C. Xia, Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks, Chemistry of Materials, 2018, 30, 2299-2308. [113] M. Li, H. Zhao, and Z.-Y. Lu, Highly efficient, reversible iodine capture and exceptional uptake of amines in viologen-based porous organic polymers, RSC Advances, 2020, 10, 20460-20466. [114] B. J. Riley, J. D. Vienna, D. M. Strachan, J. S. McCloy, and J. L. Jerden Jr, Materials and processes for the effective capture and immobilization of radioiodine: A review, Journal of Nuclear Materials, 2016, 470, 307-326. [115] K. W. Chapman, P. J. Chupas, and T. M. Nenoff, Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation, Journal of the American Chemical Society, 2010, 132, 8897-8899. [116] D. Dai, J. Yang, Y. C. Zou, J. R. Wu, L. L. Tan, Y. Wang, B. Li, T. Lu, B. Wang, and Y. W. Yang, Macrocyclic arenes‐based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption, Angewandte Chemie, 2021, 133, 9049-9057. [117] L. Xie, Z. Zheng, Q. Lin, H. Zhou, X. Ji, J. L. Sessler, and H. Wang, Calix [4] pyrrole‐based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water, Angewandte Chemie, 2022, 134, 202113724. [118] D. Gambhir, M. Venkateswarulu, T. Verma, and R. R. Koner, High adsorption capacity of an sp2/sp3-N-rich polymeric network: from molecular iodine capture to catalysis, ACS Applied Polymer Materials, 2020, 2, 152-158. [119] Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E.; Basha, M.; Qasem, N. A. A.; Peedikakkal, A.; Laoui, T.; Ali, M., "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review", Applied Energy, 2016, 161, 225-255. [120] Han, S.-J.; Yoo, M.; Kim, D.-W.; Wee, J.-H., "Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent", Energy & Fuels, 2011, 25, 3825-3834. [121] Choi, Y. S.; Im, J.; Jeong, J. K.; Hong, S. Y.; Jang, H. G.; Cheong, M.; Lee, J. S.; Kim, H. S., "CO2 absorption and desorption in an aqueous solution of heavily hindered alkanolamine: Structural elucidation of CO2-containing species", Environmental Science & Technology, 2014, 48, 4163-4170. [122] Tian, W.; Zhang, H.; Sun, H.; Suvorova, A.; Saunders, M.; Tade, M.; Wang, S., "Heteroatom (N or N‐S)‐doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications", Advanced Functional Materials, 2016, 26, 8651-8661. [123] Demir, M.; Tessema, T.-D.; Farghaly, A. A.; Nyankson, E.; Saraswat, S. K.; Aksoy, B.; Islamoglu, T.; Collinson, M. M.; El-Kaderi, H. M.; Gupta, R. B., "Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications", International Journal of Energy Research, 2018, 42, 2686-2700. [124] Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, and X. Li, Novel ferrocene-based nanoporous organic polymers for clean energy application, RSC Advances, 2015, 5, 8933-8937. [125] Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang, A. Li, and W. Deng, Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake, Journal of Materials Chemistry A, 2015, 3, 87-91. [126] Y. Cui, J. Du, Y. Liu, Y. Yu, S. Wang, H. Pang, Z. Liang, and J. Yu, Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger's base for CO2 adsorption, catalysis and sensing, Polymer Chemistry, 2018, 9, 2643-2649. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |