Responsive image
博碩士論文 etd-0502121-175732 詳細資訊
Title page for etd-0502121-175732
論文名稱
Title
運用情境感知方法於熱門美食推薦系統
Context-Awareness in Food Recommendation Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-09-11
繳交日期
Date of Submission
2021-06-02
關鍵字
Keywords
情境感知、推薦系統、協同過濾、基於內容、情緒分析
Context-Aware, Recommendation System, Collaborative Filtering, Content-Based, Sentiment Analysis
統計
Statistics
本論文已被瀏覽 529 次,被下載 2
The thesis/dissertation has been browsed 529 times, has been downloaded 2 times.
中文摘要
近年來,隨著網際網路的快速發展,資訊量已經由不足變成超載。而目前推薦系統已應用在各式各樣的領域來解決資訊超載的問題,但美食領域的應用卻還很少,也沒有考慮使用者當下的情境。另外,隨著資訊時代的來臨,美食論壇蓬勃發展,論壇中的文章也漸漸變成影響使用者選擇的因素之一。因此,本研究實作了一個美食推薦系統,系統的情境資訊包含了實體環境中的天氣、溫度,以及虛擬網路環境中的熱門程度。推薦系統的建立,使用了Microsoft的機器學習平台Azure Machine Learning Studio所提供的混合式推薦演算法,而我們也自行撰寫了R與Python的程式碼進行情境變數的探勘與計算,並將之融入推薦系統,最後排序出符合使用者偏好及當下情境的推薦結果。
Abstract
In recent years, with the rapid development of the Internet, the amount of information has changed from insufficient to overload. At present, the recommendation system has been applied in various fields to solve the problem of information overload, but there are few applications in the food field, and the context of the user is not considered. In addition, with the advent of the information age, food forums have flourished, and articles in the forum have gradually become one of the factors that affect users' choices. Therefore, this research has implemented a food recommendation system. The contextual information of the system includes the weather and temperature in the physical environment, as well as the popularity in the virtual network environment. The establishment of the recommendation system uses the hybrid recommendation algorithm provided by Microsoft's machine learning platform Azure Machine Learning Studio, and we also wrote the code of R and Python for the exploration and calculation of context variables, and integrated it into the recommendation. The system finally sorts out the recommendation results that meet the user's preference and the current situation.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 4
第二章 文獻探討 6
第一節 推薦系統 6
第二節 基於內容 6
第三節 協同過濾 8
第四節 情境感知 10
第三章 系統架構與研究步驟 16
第一節 系統架構之平台選擇 16
第二節 研究系統架構 22
第四章 方法與結果 27
第一節 推薦模型建立 27
第二節 情境變數 29
第三節 熱門度變數 30
第四節 不同推薦方法的效果比較 35
第五章 結論與建議 40
第一節 研究結論 40
第二節 研究限制與未來方向 40
參考文獻 42
參考文獻 References
中文部分
李佳羚. (2018). 自我建構與產品類型對口碑偏好之影響. (碩士), 國立臺灣科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/x42ugz
夏鐸. (2018). 小型電商是否能利用雲端機器學習技術預測商品價格彈性?以N電商為例. (碩士), 國立中山大學, 高雄市. Retrieved from https://hdl.handle.net/11296/m52w4r
張傳珩. (2019). 文本探勘與情緒分析於產品推薦之應用-以PTT電影版為例. (碩士), 東吳大學, 台北市. Retrieved from https://hdl.handle.net/11296/62w2x2
郭秉豫. (2018). 運用混合式方法建立個人化食譜推薦系統. (碩士), 國立中正大學, 嘉義縣. Retrieved from https://hdl.handle.net/11296/8yxs79
陳韋帆 & 古倫維. (2018). 中文情感語意分析套件 CSentiPackage 發展與應用.
曾冠宇. (2014). 結合多情境因素及協同過濾方法之多媒體推薦. (碩士), 國立中山大學, 高雄市. Retrieved from https://hdl.handle.net/11296/m55k53
微軟Microsoft. (2020, March 24). 什麼是Machine Learning Studio? Retrieved from https://docs.microsoft.com/zh-tw/azure/machine-learning/studio/what-is-ml-studio
維基百科. (2015, July 26). 案例推論. Retrieved from https://zh.wikipedia.org/w/index.php?title=%E6%A1%88%E4%BE%8B%E6%8E%A8%E8%AE%BA&oldid=36528909
維基百科. (2020, July 12). 批踢踢. Retrieved from https://zh.wikipedia.org/wiki/%E6%89%B9%E8%B8%A2%E8%B8%A2
維基百科. (2020, March 9). Discounted Cumulative Gain. Retrieved from https://en.wikipedia.org/wiki/Discounted_cumulative_gain


英文部分
Adomavicius, G., Mobasher, B., Ricci, F., & Tuzhilin, A. (2011). Context-aware recommender systems. AI Magazine, 32(3), 67-80.
Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems, 23(1), 103-145.
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge data engineering ACM Transactions on Information Systems, 17(6), 734-749.
Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems. In Recommender systems handbook (pp. 217-253): Springer.
Bazire, M., & Brézillon, P. (2005). Understanding context before using it. Paper presented at the International and Interdisciplinary Conference on Modeling and Using Context.
Blal, I., & Sturman, M. C. (2014). The differential effects of the quality and quantity of online reviews on hotel room sales. Cornell Hospitality Quarterly, 55(4), 365-375.
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-based systems, 46, 109-132.
Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library
information systems, 69(Supplement 32), 175-186.
Burke, R. (2002a). Hybrid recommender systems: Survey and experiments. User modeling;user-adapted interaction, 12(4), 331-370.
Burke, R. (2002b). Hybrid recommender systems: Survey and experiments. User modeling;user-adapted interaction;Encyclopedia of library, 12(4), 331-370.
Casino, F., Patsakis, C., Batista, E., Borràs, F., & Martínez-Ballesté, A. (2017). Healthy routes in the smart city: A context-aware mobile recommender. IEEE Software, 34(6), 42-47.
Chen, G., & Kotz, D. (2000). A survey of context-aware mobile computing research. Dartmouth Computer Science Technical Report TR-381.
Cheung, C. M., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461-470.
Cho, J., & Garcia-Molina, H. (1999). The evolution of the web and implications for an incremental crawler. Retrieved from
Dey, A. K. J. P., & computing, u. (2001). Understanding and using context. 5(1), 4-7.
Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of retailing, 84(2), 233-242.
Elahi, M., Ge, M., Ricci, F., Fernández-Tobías, I., Berkovsky, S., & David, M. (2015). Interaction design in a mobile food recommender system. Paper presented at the CEUR Workshop Proceedings.
Freyne, J., & Berkovsky, S. (2010). Intelligent food planning: personalized recipe recommendation. Paper presented at the Proceedings of the 15th international conference on Intelligent user interfaces.
Freyne, J., Berkovsky, S., & Smith, G. (2011). Recipe recommendation: accuracy and reasoning. Paper presented at the International conference on user modeling, adaptation, and personalization.
García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining: Springer.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-71.
Kim, J. W., Lee, B. H., Shaw, M. J., Chang, H.-L., & Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on internet storefronts. International Journal of Electronic Commerce, 5(3), 45-62.
Kolodner, J. (2014). Case-based reasoning: Morgan Kaufmann.
Koren, Y., & Bell, R. (2015). Advances in collaborative filtering. In Recommender systems handbook (pp. 77-118): Springer.
Kulkarni, S., & Rodd, S. F. (2020). Context Aware Recommendation Systems: A review of the state of the art techniques. 37, 100255.
Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M., & Duri, S. S. (2001). Personalization of supermarket product recommendations. In Applications of data mining to electronic commerce (pp. 11-32): Springer.
Lee, J. S., & Lee, J. C. (2007). Context awareness by case-based reasoning in a music recommendation system. Paper presented at the International symposium on ubiquitious computing systems.
Liang, T.-P., Lai, H.-J., & Ku, Y.-C. (2006). Personalized content recommendation and user satisfaction: Theoretical synthesis and empirical findings. Journal of Management Information Systems, 23(3), 45-70.
Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76-80.
Mak, H., Koprinska, I., & Poon, J. (2003). Intimate: A web-based movie recommender using text categorization. Paper presented at the Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).
Mankoff, J., Hsieh, G., Hung, H. C., Lee, S., & Nitao, E. (2002). Using low-cost sensing to support nutritional awareness. Paper presented at the International conference on ubiquitous computing.
Meehan, K., Lunney, T., Curran, K., & McCaughey, A. (2013). Context-aware intelligent recommendation system for tourism. Paper presented at the 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM workshops).
Mund, S. (2015). Microsoft azure machine learning: Packt Publishing Ltd.
Oku, K., Nakajima, S., Miyazaki, J., & Uemura, S. (2006). Context-aware SVM for context-dependent information recommendation. Paper presented at the 7th International Conference on Mobile Data Management (MDM'06).
Patil, Y., & Patil, S. (2016). Review of Web Crawlers with Specification and Working. International Journal of Advanced Research in Computer Communication Engineering, 5.
Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial intelligence review, 13(5-6), 393-408.
Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive web (pp. 325-341): Springer.
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35): Springer.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Paper presented at the Proceedings of the 10th international conference on World Wide Web.
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web (pp. 291-324): Springer.
Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. Paper presented at the 1994 First Workshop on Mobile Computing Systems and Applications.
Singh, M., Sahu, H., & Sharma, N. (2019). A personalized context-aware recommender system based on user-item preferences. In Data Management, Analytics and Innovation (pp. 357-374): Springer.
Stern, D., Herbrich, R., & Graepel, T. Matchbox: Large scale bayesian recommendations. Paper presented at the 18th International World Wide Web Conference.
Thelwall, M. J. J. o. I. S. (2001). A web crawler design for data mining. 27(5), 319-325.
Trattner, C., & Elsweiler, D. (2017). Food recommender systems: important contributions, challenges and future research directions. arXiv preprint arXiv:.02760.
Trevisiol, M., Chiarandini, L., & Baeza-Yates, R. (2014). Buon appetito: recommending personalized menus. Paper presented at the Proceedings of the 25th ACM conference on Hypertext and social media.
Wang, S.-M., & Ku, L.-W. (2016). ANTUSD: A large Chinese sentiment dictionary. Paper presented at the Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16).
Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T.-Y. (2013). A theoretical analysis of NDCG ranking measures. Paper presented at the Proceedings of the 26th annual conference on learning theory (COLT 2013).
Zhang, M., Wang, W., & Li, X. (2008). A paper recommender for scientific literatures based on semantic concept similarity. Paper presented at the International Conference on Asian Digital Libraries.
Zhang, R., Bao, H., Sun, H., Wang, Y., & Liu, X. (2016). Recommender systems based on ranking performance optimization. Frontiers of Computer Science, 10(2), 270-280.
Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. 52(1), 1-38.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code