Responsive image
博碩士論文 etd-0517122-160958 詳細資訊
Title page for etd-0517122-160958
論文名稱
Title
探討72小時內非預期重返急診之風險因子
Exploring risk factors of unexpected return to the emergency department within 72 hours
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-05-30
繳交日期
Date of Submission
2022-06-17
關鍵字
Keywords
非預期重返、風險因子、人格特質、職業疲勞、不適切照護
unexpected return, risk factor, personality, burnout, suboptimal care
統計
Statistics
本論文已被瀏覽 385 次,被下載 203
The thesis/dissertation has been browsed 385 times, has been downloaded 203 times.
中文摘要
研究背景:
隨著緊急醫療的精進與健保的普及,急診服務的需求也相對呈現逐年成長趨勢;非計劃性再返急診可能是急診照護的警訊,使得急性照護的醫療資源耗用與照護成本增加,影響到真正需要急診照護病患之權益,非計劃性返診的監測意謂著對於急診臨床現況進行檢視,以確保有效的急診醫療服務及品質。
研究目的:
為了解急診病患72小時內重返急診情況,探討影響病患非計劃性重返急診之危險因子,藉此了解急診流程、環境及人員在急診緊急情況下對醫療照護結果的影響,做為醫療機構有效管理及改善急診返診現況之依據。
研究方法:
本綜合性研究對象為某醫學中心的急診病患及醫師,研究一為前瞻性研究(Prospective study)之設計,醫師資料使用結構式問卷進行急診醫師之人格特質、職業疲勞及不適切照護情況的資料收集,檢視急診醫師人格特質是否會影響其提供醫療照護情形,以及職業疲勞對人格特質與照護行為影響,並採拔靴法重抽信賴區間檢視中介效果於兩變數關係中的角色;研究二病患資料採回溯性研究(Retrospective study)之設計,擷取某南部醫學中心2019年期間急診就醫之病患資料,並將三日內有急診就醫紀錄定義為72小時內有非預期再入急診者,擷取包含性別、年齡、身份別、檢傷級數、急診滯留時間、就診時間、急診壅塞程度、出院動向、是否72小時內再入急診等;經合併醫師資料後再針對涉及病患、疾病、醫師與醫院等現況因素進行72小時再返急診之相關因子探討,並以拔靴法、傾向分數配對法、卡方檢定、獨立樣本T檢定、複邏輯斯迴歸(Multivariate logistic regression)、多層次分析(Multi-level Analysis)等檢視變項間的關係與重返急診危險因子。
結果:
研究一探討急診醫師人格特質與不適切照護間的關係,五大人格特質會透過工作相關疲勞間接影響急診醫師提供的不適切照護情形;研究二探究急診病患72小時內重返的危險因子,該研究醫院2019年急診病患重返率4.47%,其中病患性別、檢傷級數、急診壅塞程度、急診就診時間、醫師的年齡與年資對於病患是否72小時內急診重返無顯著影響;病患年紀較大、病人身份別為重大傷病、急診滯留時間為6-48小時、病人自行離院或自動出院、醫師的人格特質為神經質以及有工作相關疲勞者皆達統計顯著影響;而探討醫師因素於二階層邏輯斯迴歸當中發現,醫師因素可以解釋病人72小時重返急診的變異百分比僅2.75%,且因隨機效果的變異數估計不收斂,二階層邏輯斯迴歸模型的結果會與邏輯斯迴歸模型相似,即醫師層級變數的影響對病患72小時內重返急診的影響性不大。
結論:
分析結果發現工作相關疲勞是主要影響急診醫師提供的不適切照護情形的重要因素,可藉由調整醫師班別的人力或提供緩解醫師工作疲勞措施,來改善醫師工作疲勞狀態,進而降低病患重返急診影響;針對顯著影響急診病患72小時內重返的相關風險因子,建議適時將年紀大、病人身份為重大傷病者、疑似可能自行離院或自動出院患者列為優先介入衛教族群,提供個別性溝通與加強出院衛教;考量醫師層級因素對於急診病患72小時重返的影響不大,可把重心放在病人教育與急診流程改善;另建議醫院針對急診醫療品質指標予以持續性的監測與定期性的檢討與介入。
Abstract
Background:
With the advancement of emergency medical care and the generalization of national health insurance, the amount of emergency services is growing yearly. An unexpected return to the emergency department(ED)may indicate suboptimal or inappropriate care. The situation may increase the medical resources and costs, and affect those patients in need. Hospitals usually adopt varied strategies and reforms to improve the quality of care and reduce medical waste.
Objective:
This study investigated factors of an unexpected ED return within 72 hours. By identifying risk factors, the hospital may have the inspection and timely intervention on the outcome of emergency care related to the process, environmental, and personnel deficits.
Method:
The study combined and adopted subject data from patients and physicians in the ED of a south medical center. Study one is a prospective study collecting data from emergency physicians on personality traits, burnout, and suboptimal care with a structured questionnaire. The analysis applied the method of bootstrapping to represent the indirect effect of burnout among the causality. Study two is a retrospective study to gather patients’ data during the year 2019 through the emergency information system. Patients who had emergency medical treatment during this period were recruited and gathered information on patient gender, age, identity, length of stay, triage level, visiting shift, emergency crowding, and discharge mode. Emergency patients discharge and return to the ED within 72 hours are regarded as patients who have unexpectedly returned to the ED. The data from two studies were combined and matched by propensity score, so risk factors related to the patient, diseases, physician, and hospital were identified by applying the independent t-test, chi-square test, multivariate logistic regression, and multi-level analysis.
Results:
Work-related burnout of emergency physicians has an indirect effect on the relation of physicians’ personality and suboptimal care. The unexpected return rate of 4.47% was yielded with 4,086 patients returned out of the 91,582 included patients. The results found that patients’ age, the identity of severe illness, leaving without notice or discharge against advice, stay in the ED for 6-48 hours, physicians’ work-related burnout, and personality neuroticism were influential predictors of returning to the ED. No significant effect on physician-level was found in the multilevel logistic regression analysis regarded to evaluate ED revisiting within 72 hours.
Conclusion:
Patients with advanced age, the identity of severe illness, stay in the ED for 6-48 hours, and those likely to against advice or leave without notice should be implemented in discharge planning in priority. Reforms to adjust the workload or ease the burnout of physicians are essential for occupational health of professionals. Identifying risk factors of return to the ED within 72 hours could help hospitals to monitor and optimize the quality of emergency care concerning the clinical practice, emergency environment, and personnel management continuously.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
圖次 ix
表次 x
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第二章 文獻探討及研究假設 4
第一節 急診醫學現況與流程 4
第二節 急診醫療品質指標 5
第三節 急診醫師的職業疲勞 6
第四節 72小時非預期性急診返診因素 10
第三章 研究設計與方法 22
第一節 研究步驟 22
第二節 研究一急診醫師因素 23
第三節 研究二72小時重返急診相關因素 26
第四章 研究結果 33
第一節 研究對象之描述性統計 33
第二節 量表之信度分析結果 36
第三節 職業疲勞對於醫師人格特質與不適切照護關係的影響 39
第四節 傾向分數配對後之資料分析 45
第五節 各變項對急診72小時重返急診之邏輯斯迴歸分析 50
第六節 二階層邏輯斯迴歸模型分析 52
第五章 研究討論與結論 56
第一節 研究假設驗證 56
第二節 研究討論 57
第三節 研究結論 61
第四節 研究限制 62
第五節 管理意涵與建議 63
參考文獻 65
附錄 73
附錄一 研究問卷 73
附錄二 IRB證明 78
參考文獻 References
Abu-Bader, S., & Jones, T. V. (2021). Statistical mediation analysis using the sobel test and hayes SPSS process macro. International Journal of Quantitative and Qualitative Research Methods, 9(1), 42-61.
ACEP. (2021). Definition of emergency medicine. Retrieved from https://www.acep.org/globalassets/new-pdfs/policy-statements/definition-of-emergency-medicine.pdf
Bakker, A. B., Van Der Zee, K. I., Lewig, K. A., & Dollard, M. F. (2006). The relationship between the big five personality factors and burnout: A study among volunteer counselors. The Journal of social psychology, 146(1), 31-50.
Bernstein, S. L., Verghese, V., Leung, W., Lunney, A. T., & Perez, I. J. A. E. M. (2003). Development and validation of a new index to measure emergency department crowding. 10(9), 938-942.
Borritz, M., Rugulies, R., Bjorner, J. B., Villadsen, E., Mikkelsen, O. A., & Kristensen, T. S. J. S. j. o. p. h. (2006). Burnout among employees in human service work: design and baseline findings of the PUMA study. 34(1), 49-58.
Brown, P. A., Slater, M., & Lofters, A. (2019). Personality and burnout among primary care physicians: an international study. Psychology research and behavior management, 12, 169-177. doi:10.2147/prbm.s195633
Carpenter, C. R., Raja, A. S., & Brown, M. D. J. A. E. M. (2015). Overtesting and the downstream consequences of overtreatment: implications of “preventing overdiagnosis” for emergency medicine. 22(12), 1484-1492.
Chan, A. H. S., Ho, S. F., Fook-Chong, S. M. C., Lian, S. W. Q., Liu, N., & Ong, M. E. H. (2016). Characteristics of patients who made a return visit within 72 hours to the emergency department of a Singapore tertiary hospital. Singapore medical journal, 57(6), 301-306. doi:10.11622/smedj.2016104
Cheng, S.-Y., Wang, H.-T., Lee, C.-W., Tsai, T.-C., Hung, C.-W., & Wu, K.-H. (2013). The characteristics and prognostic predictors of unplanned hospital admission within 72 hours after ED discharge. The American Journal of Emergency Medicine, 31(10), 1490-1494. doi:https://doi.org/10.1016/j.ajem.2013.08.004
Duseja, R., Bardach, N. S., Lin, G. A., Yazdany, J., Dean, M. L., Clay, T. H., . . . Dudley, R. A. (2015). Revisit rates and associated costs after an emergency department encounter: a multistate analysis. Annals of internal medicine, 162(11), 750-756.
Fong, T. C., Ho, R. T., & Ng, S. (2014). Psychometric properties of the copenhagen burnout inventory—Chinese Version. The Journal of psychology, 148(3), 255-266.
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach: Guilford publications.
Hayward, J., Hagtvedt, R., Ma, W., Gauri, A., Vester, M., & Holroyd, B. R. (2018). Predictors of admission in adult unscheduled return visits to the emergency department. Western Journal of Emergency Medicine, 19(6), 912.
Hendee, W. R., Becker, G. J., Borgstede, J. P., Bosma, J., Casarella, W. J., Erickson, B. A., . . . Wallner, P. E. J. R. (2010). Addressing overutilization in medical imaging. 257(1), 240-245.
Hiti, E. A., Tamim, H., Makki, M., Geha, M., Kaddoura, R., & Obermeyer, Z. (2020). Characteristics and determinants of high-risk unscheduled return visits to the emergency department. Emergency Medicine Journal, 37(2), 79-84.
Hu, K.-W., Lu, Y.-H., Lin, H.-J., Guo, H.-R., & Foo, N.-P. (2012). Unscheduled Return Visits With and Without Admission Post Emergency Department Discharge. The Journal of Emergency Medicine, 43(6), 1110-1118. doi:https://doi.org/10.1016/j.jemermed.2012.01.062
Huggins, C., Robinson, R. D., Knowles, H., Cizenski, J., Mbugua, R., Laureano-Phillips, J., . . . medicine, e. e. (2019). Large observational study on risks predicting emergency department return visits and associated disposition deviations. 6(2), 144.
Hung, S.-C., Chew, G., Kong, C.-T., Hsiao, C.-T., & Liaw, S.-J. (2004). Unplanned emergency department revisits within 72 hours. Journal of Emergency Medicine, Taiwan, 6(1), 230-238.
Hutchinson, C. L., McCloughen, A., & Curtis, K. (2019). Incidence, characteristics and outcomes of patients that return to Emergency Departments. An integrative review. Australasian Emergency Care, 22(1), 47-68. doi:https://doi.org/10.1016/j.auec.2018.12.003
John, O. P., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. Handbook of personality: Theory and research, 2(1999), 102-138.
Klein, J., Grosse Frie, K., Blum, K., & von dem Knesebeck, O. J. I. J. f. Q. i. H. C. (2010). Burnout and perceived quality of care among German clinicians in surgery. 22(6), 525-530.
Kristensen, T. S., Borritz, M., Villadsen, E., & Christensen, K. B. (2005). The Copenhagen Burnout Inventory: A new tool for the assessment of burnout. Work & Stress, 19(3), 192-207.
Li, C.-J., Syue, Y.-J., Kung, C.-T., Hung, S.-C., Lee, C.-H., & Wu, K.-H. (2016). Seniority of Emergency Physician, Patient Disposition and Outcome Following Disposition. The American Journal of the Medical Sciences, 351(6), 582-588. doi:https://doi.org/10.1016/j.amjms.2016.02.041
Loi, S. L., Fauzi, M. H. H., & Noh, A. M. (2018). Unscheduled early revisit to emergency department. Hong Kong Journal of Emergency Medicine, 25(5), 264-271. doi:10.1177/1024907918767012
Lu, D. W., Dresden, S., McCloskey, C., Branzetti, J., & Gisondi, M. A. (2015). Impact of Burnout on Self-Reported Patient Care Among Emergency Physicians. The western journal of emergency medicine, 16(7), 996-1001. doi:10.5811/westjem.2015.9.27945
Makkai, K. (2018). Evaluating the Level of Burnout among Healthcare Professionals. Acta Universitatis Sapientiae, Social Analysis, 8(1), 23-39.
Maslach, C., & Jackson, S. E. (1984). Burnout in organizational settings. Applied social psychology annual.
Maslach, C., Jackson, S. E., & Leiter, M. P. (2006). Maslach burnout inventory: CPP.
Miyakis, S., Karamanof, G., Liontos, M., & Mountokalakis, T. D. J. P. m. j. (2006). Factors contributing to inappropriate ordering of tests in an academic medical department and the effect of an educational feedback strategy. 82(974), 823-829.
Newton, E. H. (2017). Addressing overuse in emergency medicine: evidence of a role for greater patient engagement. Clinical experimental emergency medicine, 4(4), 189.
Pajonk, F. G., Andresen, B., Schneider-Axmann, T., Teichmann, A., Gartner, U., Lubda, J., . . . von Knobelsdorff, G. (2011). Personality traits of emergency physicians and paramedics. Emergency Medicine Journal, 28(2), 141-146. doi:10.1136/emj.2009.083311
Panagioti, M., Geraghty, K., Johnson, J., Zhou, A., Panagopoulou, E., Chew-Graham, C., . . . Esmail, A. J. J. i. m. (2018). Association between physician burnout and patient safety, professionalism, and patient satisfaction: a systematic review and meta-analysis. 178(10), 1317-1331.
Panagioti, M., Panagopoulou, E., Bower, P., Lewith, G., Kontopantelis, E., Chew-Graham, C., . . . Esmail, A. J. J. i. m. (2017). Controlled interventions to reduce burnout in physicians: a systematic review and meta-analysis. 177(2), 195-205.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891.
Prins, D. J., van Vendeloo, S. N., Brand, P. L. P., Van der Velpen, I., de Jong, K., van den Heijkant, F., . . . Prins, J. T. (2019). The relationship between burnout, personality traits, and medical specialty. A national study among Dutch residents. Medical Teacher, 41(5), 584-590. doi:10.1080/0142159X.2018.1514459
Rosenbaum, P., & Rubin, D. (1983). The Central Role of the Propensity Score in Observational Studies For Causal Effects. Biometrika, 70, 41-55. doi:10.1093/biomet/70.1.41
Sarıyer, G., Ataman, M. G., & Kızıloğlu, İ. (2020). Analyzing main and interaction effects of length of stay determinants in emergency departments. International journal of health policy and management, 9(5), 198.
Schaufeli, W. B., Leiter, M. P., & Maslach, C. (2009). Burnout: 35 years of research and practice. Career development international, 14(3), 204-220.
Schwartz, A. L., Landon, B. E., Elshaug, A. G., Chernew, M. E., & McWilliams, J. M. J. J. i. m. (2014). Measuring low-value care in Medicare. 174(7), 1067-1076.
Shanafelt, T. D., Bradley, K. A., Wipf, J. E., & Back, A. L. (2002). Burnout and self-reported patient care in an internal medicine residency program. Annals of internal medicine, 136(5), 358-367.
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: new procedures and recommendations. J Psychological methods, 7(4), 422.
Trivedy, C. R., & Cooke, M. W. (2015). Unscheduled return visits (URV) in adults to the emergency department (ED): a rapid evidence assessment policy review. Emerg Med J, 32(4), 324-329.
Tropea, J., Sundararajan, V., Gorelik, A., Kennedy, M., Cameron, P., & Brand, C. A. (2012). Patients who leave without being seen in emergency departments: an analysis of predictive factors and outcomes. Academic Emergency Medicine, 19(4), 439-447.
Tsai, Y.-L., Tung, Y.-C., & Cheng, Y. (2018). Surveys of Burnout Among Physicians in Taiwan. Journal of acute medicine, 8(3), 86-98. doi:10.6705/j.jacme.201809_8(3).0002
Wang, H.-Y., Chew, G., Kung, C., Chung, K., & Lee, W. J. C. G. m. j. (2007). The use of Charlson comorbidity index for patients revisiting the emergency department within 72 hours. 30(5), 437.
Wang, K. C., Chaou, C. H., Liu, P. H., Chien, C. Y., & Lee, C. H. (2017a). Factors Affecting Unscheduled Return Visits to the Emergency Department among Minor Head Injury Patients. Biomed Research International, 2017. doi:10.1155/2017/8963102
Wang, K. C., Chaou, C. H., Liu, P. H., Chien, C. Y., & Lee, C. H. (2017b). Factors Affecting Unscheduled Return Visits to the Emergency Department among Minor Head Injury Patients. Biomed Research International. doi:10.1155/2017/8963102
West, C. P., Dyrbye, L. N., & Shanafelt, T. D. (2018). Physician burnout: contributors, consequences and solutions. Journal of Internal Medicine, 283(6), 516-529. doi:10.1111/joim.12752
Winwood, P. C., & Winefield, A. H. (2004). Comparing two measures of burnout among dentists in Australia. International Journal of Stress Management, 11(3), 282-289.
Wise, J. (2018). Burnout linked to suboptimal patient care, study finds. Bmj-British Medical Journal, 362. doi:10.1136/bmj.k3771
Wu, C.-L., Wang, F.-T., Chiang, Y.-C., Chiu, Y.-F., Lin, T.-G., Fu, L.-F., & Tsai, T.-L. (2010). Unplanned emergency department revisits within 72 hours to a secondary teaching referral hospital in Taiwan. The Journal of Emergency Medicine, 38(4), 512-517.
Yeh, W.-Y., Cheng, Y., Chen, C.-J., Hu, P.-Y., & Kristensen, T. S. (2007). Psychometric properties of the Chinese version of Copenhagen burnout inventory among employees in two companies in Taiwan. International journal of behavioral medicine, 14(3), 126-133.
Zaboli, R., Malmoon, Z., Soltani-Zarandi, M. R., & Hassani, M. (2018). Factors affecting sentinel events in hospital emergency department: a qualitative study. International Journal of Health Care Quality Assurance, 31(6), 575-586. doi:10.1108/IJHCQA-07-2017-0137
方震中. (2015). 急診醫師過勞. [Burnout among Emergency Physicians]. 台灣醫學, 19(5), 494-498. doi:10.6320/fjm.2015.19(5).07
石崇良, & 蘇喜. (2004). 運用資訊提升病人安全. 臺灣醫學, 8(6), 807-816.
吳明隆, & 張毓仁. (2014). 多層次模式的進階應用 (1th ed.). 台北市: 五南.
吳秋芬, 吳肖琪, 石富元, & 許銘能. (2008). 影響急診病患暫留時間之相關因素探討. [Exploring the Factors Related to Length of Stay in Emergency Departments]. 台灣公共衛生雜誌, 27(6), 507-518. doi:10.6288/tjph2008-27-06-05
呂碧鴻, 高美英, 陳秀蓉, & 王長偉. (2011). 住院醫師工作疲勞與個人性格及因應型態的關連. 醫學教育, 15(1), 21-30.
李麗惠, 薛亞聖, & 楊長興. (2006). 週末假日就醫與治療結果之相關探討. [The Relationship between Admission on Weekends or Holidays and Treatment Outcome]. 台灣公共衛生雜誌, 25(2), 107-114. doi:10.6288/tjph2006-25-02-03
周歆凱, 黃興進, 蔡明足, 翁林仲, 蘇喜, & 陳真吟. (2009). 運用資料探勘之叢集分析技術探討急診 72 小時再返診病患特性. 澄清醫護管理雜誌, 5(3), 13-20.
周歆凱, 蘇喜, 黃興進, 蔡明足, & 翁林仲. (2006). 運用決策樹技術探討急診病患醫療費用之消耗. 台灣公共衛生雜誌, 25(6), 430-439.
林鉦棽, & 彭台光. (2012). 組織研究的中介檢測: 緣起, 爭議, 研究設計和分析. 管理學報, 29(4), 333-354.
邱皓政, & 溫福星. (2007). 脈絡效果的階層線性模型分析: 以學校組織創新氣氛與教師創意表現為例. 教育與心理研究, 30(1), 1-35.
邱曉彥, 陳麗琴, 林琇珠, 桑潁潁, 康巧娟, & 邱艷芬. (2008). 台灣急診檢傷新趨勢-五級檢傷分類系統. [Current Trends in Emergency Triage in Taiwan: The Five-Level Triage System]. 護理雜誌, 55(3), 87-91. doi:10.6224/jn.55.3.87
洪世昌, 賴世偉, 李亞欣, 謝豐年, 陳玉如, & 劉翎玲. (2010). 急診近期返診之探討: 以南投市某地區醫院為例. 中華民國急救加護醫學會雜誌, 21(S), 21-27.
洪瑞斌. (2013). 職業倦怠研究在台灣之回顧與前瞻. [Studies on Burnout in Taiwan: A Critical Review]. 13(3), 107-140. doi:10.6147/jhrm.2013.1303.04
張晏蓉, 葉婉榆, 陳春萬, 陳秋蓉, 石東生, & 鄭雅文. (2007). 台灣受僱者疲勞的分布狀況與相關因素. 臺灣公共衛生雜誌(1), 75-87.
梁素琴, 戴玫瑰, & 莊玉仙. (2011). 急診停留時間過長病患之特徵分析. 醫務管理期刊, 12(4), 237-247.
莊秀文, 劉淑芬, 王崇昌, & 李挺宇. (2020). 醫療風險管理之預應式分析法的應用缺失探討. [Application deficiencies of proactive analysis method for health care risk management]. 14(2), 34-41. doi:10.3966/199457952020031402007
莊旺川, 林政翰, 黃文祥, 黃新智, 周宏杰, & 盧宥銘. (2017). 醫院急診壅塞即時監測看板系統. Paper presented at the TANET2017 臺灣網際網路研討會, Taichung.
莊旺川, 葉淑娟, & 黃竫棻. (2021). 探討 72 小時內非預期重返急診之風險因子. 台灣公共衛生雜誌, 40(6), 631-641.
陳愉雅, & 張高賓. (2012). 諮商心理師五大人格特質, 壓力因應策略與專業耗竭之相關研究. 家庭教育與諮商學刊(13), 1-23.
陳楚杰, 蔡佳妍, 陳靖宜, 柯明中, & 湯淑貞. (2018). 老人急診病患三天內重返急診相關因素分析.
黃金安, 賴其勛, 翁瑞宏, 胡為雄, & 楊大羽. (2004). 病患非計畫性重返急診之因素分析—以病人觀點探討. Journal of Emergency Medicine, Taiwan, 6(2), 306-314.
葉時烊, 胡百敏, 廖浩欽, 林作彥, 王少谷, & 廖訓禎. (2010). 急診病人三日內重返急診之分析: 全民健康保險研究資料庫之抽樣歸人檔資料分析. 台灣急診專科醫師期刊, 2(1), 6-13.
葉婉榆, 鄭雅文, 陳美如, & 邱文祥. (2008). 職場疲勞量表的編製與信效度分析. 台灣衛誌, 27, 349-364.
廖茂宏, 林韶穎, 湯淑貞, 陳靖宜, & 陳楚杰. (2017). 急診病患三天內重返急診之相關因素分析: 全人口代表性資料的研究. 醫務管理期刊, 18(3), 177-201.
衛生福利部. (2018a). 107年度全民健康保險醫療統計年報. 衛生福利部 Retrieved from https://dep.mohw.gov.tw/DOS/lp-5103-113.html
衛生福利部. (2018b). 107年醫療機構現況及服務量統計年報. 衛生福利部 Retrieved from https://dep.mohw.gov.tw/DOS/lp-5099-113.html
醫務管理學會. (2011). 台灣醫療照護品質指標系列簡介. 社團法人臺灣醫務管理學會. Retrieved from http://www.tche.org.tw/UI/N/N10003.aspx
醫策會. (2013). 台灣臨床成效指標計畫. 財團法人醫院評鑑暨醫療品質策進會. Retrieved from http://tcpi.jct.org.tw/tcpi/
顏志龍, & 鄭中平. (2019). 給論文寫作者的統計指南: 傻瓜也會跑統計: 五南圖書出版股份有限公司.
顏瑞昇, 石富元, 蔡光超, 陳石池, & 陳文鍾. (2003). 回診的急診病患:分析危險因子和回診原因. [Revisits to the Emergency Department: Analysis of Risk Factors and Reasons]. 中華民國急救加護醫學會雜誌, 14(3), 93-98. doi:10.30018/jeccm.200309.0001
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code