論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
消費者從電信業實體門市轉換至網路門市之意圖研究 A Study on Customers’ Intentions to Switch from Physical Stores to Online Stores in the Telecommunications Industry |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
64 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-06-22 |
繳交日期 Date of Submission |
2021-07-06 |
關鍵字 Keywords |
推力-拉力-維繫力模型、實體門市、網路門市、智慧客服、轉換意圖 push-pull-mooring model, physical stores, online stores, smart customer service, switching intention |
||
統計 Statistics |
本論文已被瀏覽 442 次,被下載 119 次 The thesis/dissertation has been browsed 442 times, has been downloaded 119 times. |
中文摘要 |
網路為人們帶來許多便利性,而電信業者也利用網路科技的特性,設立網路門市,希望能提供多元化的全方位服務管道,讓消費者在申辦業務時可以不受空間、時間的影響。在過去研究電信業消費者轉換的研究中,大多探討如何留住消費者,較少探討消費者對於實體門市及網路門市間的使用意圖。 本研究以推力-拉力-維繫力模型探討電信業消費者通路選擇的轉換意圖,找出能強化消費者移轉至網路門市的吸引力。採用線上問卷形式蒐集樣本,共回收322份有效問卷,為研究模型提供良好的信度和效度。 研究結果顯示,推力-拉力-維繫力模型能有效解釋消費者對網路門市的轉換意圖。該模型顯示,推力效果 (不便利性、服務品質不佳、服務時間長)、拉力效果 (資訊豐富度、相對優勢、智慧客服)及維繫力效果(轉換成本、習慣),能有效解釋消費者對網路門市的轉換意圖並具有顯著影響;創新人格對維繫力效果與轉換意圖間有顯著干擾效果,但對拉力效果與轉換意圖間無顯著干擾效果。最後,本研究提出理論及實務意涵的建議,期望對未來相關研究有所助益。 |
Abstract |
The Internet has brought a lot of convenience to people, and telecommunications providers have employed the features of Internet and Web technologies to set up online stores, hoping to provide a diversified and full-service channel, so that consumers can be free from space and time when applying for services. According to the literature reviews on consumer switching intention in the telecommunications industry, most studies discussed how to retain consumers and seldom focused on consumers’ switching intention between physical stores and online stores. The study proposes the push-pull-mooring model to investigate the consumers’ switching intention in order to reinforce the attraction of consumer' preferences on online stores. Using an online questionnaire survey, 322 online service users are involved as respondent and provide reliability and validity for the research model. The results indicate that the push-pull-mooring model can effectively explain consumers' intention to switch from physical stores to online stores in the telecommunications industry. The model shows that push effects (inconvenience, poor service quality, long wait time for service), pull effects (information richness, relative advantage, smart customer service) and mooring effects (switching cost, habits) have significant effects on switching intention. Moreover, in this study, the influence of consumers’ innovative personality has interference effect between the interaction of mooring effects and switching intention, but has no interference effect between the interaction of pull effects and switching intention. Last, building on the theory and practical practice in this study can be a help as a future reference for more studies in the future. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii 第一章緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究問題與目的 3 第四節 研究流程 4 第二章 文獻探討 5 第一節 網路門市的發展及與實體門市的差異 5 第二節 人口遷移理論與Push-Pull-Mooring(PPM)理論模型 7 第三章 研究方法 12 第一節 研究模型 12 第二節 研究假說 12 第三節 操作型定義 17 第四節 研究設計 18 第四章 資料分析 24 第一節 資料收集 24 第二節 衡量模型 26 第三節 結構模型與假說驗證 39 第五章 結論與建議 42 第一節 研究結果 42 第二節 理論與實務意涵 43 第三節 研究限制與未來研究方向 44 參考文獻 45 附錄:本研究正式問卷 50 |
參考文獻 References |
1. Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215. 2. Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS quarterly, 665-694. 3. Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115. 4. Beauchamp, M. B., & Ponder, N. (2010). Perceptions of retail convenience for in-store and online shoppers. The Marketing Management Journal, 20(1), 49-65. 5. Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding Service Convenience. Journal of Marketing, 66, 1-17. 6. Bogue, Donald, J. (1969). Principles of Demography, John Wiley & Sons Inc., New York. 7. Boyd, T. C., & Mason, C. H. (1999). The link between attractiveness of “extrabrand” attributes and the adoption of innovations. Journal of the Academy of Marketing Science, 27(3), 306-319. 8. Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer switching costs: a typology, antecedents, and consequences. Journal of the Academy of marketing Science, 31(2), 109-126. 9. Diamantopoulos, A., & Siguaw, J. A. (2000). Introducing LISREL: A guide for structural equation modeling: California: Sage Publications Inc. 10. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. 11. Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1992). Multivariate Data Analysis with Readings, 3-rd edition. 12. Hertog, P. D. (2000). Knowledge-intensive business services as co-producers of innovation. International journal of innovation management, 4(04), 491-528. 13. Hightower Jr, R., Brady, M. K., & Baker, T. L. (2002). Investigating the role of the physical environment in hedonic service consumption: an exploratory study of sporting events. Journal of Business research, 55(9), 697-707. 14. Hornik, J. (1984). Subjective vs. objective time measures: A note on the perception of time in consumer behavior. Journal of consumer research, 11(1), 615-618. 15. Jashapara, A., & Tai, W. C. (2006). Understanding the complexity of human characteristics on e-learning systems: an integrated study of dynamic individual differences on user perceptions of ease of use. Knowledge Management Research & Practice, 4(3), 227-239. 16. Kim, G., Shin, B., & Lee, H. G. (2006). A study of factors that affect user intentions toward email service switching. Information & Management, 43(7), 884-893. 17. Kumar, P., Kalwani, M. U., & Dada, M. (1997). The impact of waiting time guarantees on customers' waiting experiences. Marketing science, 16(4), 295-314. 18. Lee, E. S. (1966). A theory of migration. Demography, 3(1), 47-57. 19. Lewis, G. J. (1982). Human migration: a geographical perspective. Routledge. 20. Limayem, M., & Hirt, S. G. (2003). Force of habit and information systems usage: Theory and initial validation. Journal of the Association for Information Systems, 4(1), 3. 21. Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 705-737. 22. Longino Jr, C. F. (1992). The forest and the trees: micro-level considerations in the study of geographic mobility in old age. In elderly migration and population redistribution, 23-34. 23. Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222. 24. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual: A Multiple-Item Scale For Measuring Consumer Perc. Journal of Retailing, 64, 1. 25. Polites, G. L., & Karahanna, E. (2012). Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS quarterly, 36(1). 26. Rogers, E. M. (1995), Diffusion of Innovation, 4th ed., New York: Free Press. 27. Roy, R., Chintagunta, P. K., & Haldar, S. (1996). A framework for investigating habits,“The Hand of the Past,” and heterogeneity in dynamic brand choice. Marketing science, 15(3), 280-299. 28. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. 29. 최지현. (2018). A study on factors affecting a customer's switching intention to pure-play Internet bank using the Push-Pull-Mooring model (Doctoral dissertation, 서울대학교 대학원). 30. 台灣趨勢研究中心.(2012).產業分析:電信業發展趨勢.民109年12月15日,檢自:https://www.twtrend.com/share_cont.php?id=33 31. 財團法人台灣網路資訊中心.(2018).2018年台灣網路報告.民109年12月15日,檢自:https://www.twnic.tw/doc/twrp/201812e.pdf 32. 國家發展委員會.(2018).高齡化時程.民109年12月15日,檢自:https://www.ndc.gov.tw/Content_List.aspx?n=695E69E28C6AC7F3 33. 中華電信官網.公司年報.民109年12月15日,檢自:https://www.cht.com.tw/zh-tw/home/cht/investors/annual-report 34. 財團法人資訊工業策進會,電子商業答客問,初版,經濟部商業司,民國八十六年。 35. 文婕玲. (2019).應用 PPM 架構探討零售業消費者轉換行為-以手機確認行為為調節變數.國立臺灣科技大學 36. 林彥均. (2020). 以信任轉移與互動親密度探討純網銀的使用意圖. 國立中山大學 37. 胡婉玲. (2006). 消費者使用創新性, 轉換成本與轉換意圖間關係之實證研究. 行銷評論, 3(4), 399-421. 38. 郭佳育, 洪嘉穗, 朱育德, 陳姿君, 鍾佑祥, 鍾文欣, ... & 王湘媚. (2018). 電信業數位門市服務發展架構. TANET 2018 臺灣網際網路研討會, 1943-1948. 39. 陳秋媚. (2019). 以推力-拉力-維繫力理論探討消費者對智慧商店之轉換意圖. 國立中山大學 40. 陳信宏, 林志鴻, & 馮秋蓉. (2019). 社群網站的資訊豐富度與品牌知名度對消費者購買意願之影響. Electronic Commerce Studies, 17(1), 53-83. 41. 楊忠民. (2012). 實體通路與7net雲端超商虛實整合零售模式間顧客轉換意圖之研究. 國立勤益科技大學 42. 蔡慶齡. (2012). 探討台灣電信業門市之環境體驗, 服務品質與客戶滿意度對客戶忠誠度之影響. 臺北科技大學經營管理系碩士班學位論文, 1-72. 43. 薛婷云. (2019). 運用人工智慧與顧客滿意度之研究-以金融業為例. 淡江大學企業管理學系碩士班學位論文, 1-95. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |