Responsive image
博碩士論文 etd-0606121-204646 詳細資訊
Title page for etd-0606121-204646
論文名稱
Title
鋰電池產業生態與財務分析
An Ecological and Financial Study on Lithium Battery Industry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-06-28
繳交日期
Date of Submission
2021-07-06
關鍵字
Keywords
電動車、電池產業、金牛事業、鋰電池、自由現金流
electric vehicles, the battery industry, cash cows business, lithium battery, free cash flow
統計
Statistics
本論文已被瀏覽 188 次,被下載 179
The thesis/dissertation has been browsed 188 times, has been downloaded 179 times.
中文摘要
近來TESLA電動車突如其來的竄起,掀起對電動車產業供應鏈的浪潮,顛覆以往對電動車的舊觀念,創新科技讓電動車有更多的機會持續進步。過去電動車與汽油車對環境生態污染的比較皆是電動車有所優勢,但是由於安全性與品質未能穩定控制,過去便乏人問津。如今科技進步下,讓電動車更容易向前邁進。電池產業也在此時受到關注,從上游、中游、下游產業來分析獲利情況,可以得知下游產業獲利機會較高,中游、上游產業幾乎虧損。下游產業毛利率也較高,也是金牛事業。中游、上游產業毛利較低,大部分都是問題兒童事業,需要有強力的母公司持續資金投入,或是多角化經營降低對單一產業的依賴。但還是有少數事業因為產品打入APPLE手機供應商成為金牛事業,其餘虧損事業無疑是很難在電池產業繼續經營,必須要依賴金牛事業轉投資到資金缺乏的中游、上游產業,或是政府國家開發基金共同投入資金,拋磚引玉帶動整體產業蓬勃發展,不然問題兒童事業長期虧損下,終將走入瘦狗事業清算解散。
本論文研究利用財務報表之現金流量表改變成自由現金流,利用營業現金流量與投資金額來評估金牛事業、明星事業及問題兒童事業在何處,讓金牛事業可以投資問題兒童事業,強化整個產業供應鏈,讓技術不再外流與成本得到控制,不需仰賴進口。台灣目前電池產業規模都相對較小,無法與國際大廠相比,只能依賴各金牛事業或是政府國發基金來大力扶植產業。
Abstract
Recently, the sudden rise of TESLA electric vehicles has set off a wave of the electric vehicle industry chain, subverting the old concept of electric vehicles in the past, and innovation of technology has given electric vehicles more opportunities to progress.
In the past, the comparison between electric vehicles and gasoline vehicles on environmental and ecological pollution was that electric vehicles had advantages. However, the lack of stable control of safety and quality, there was little interest in the past. Nowadays, technological advancement makes it easier for electric vehicles to move forward.
The battery industry is also receiving attention at this time. From the study of profitability from the upstream, midstream, and downstream industries, we can see that the downstream industries have higher profit opportunities, and the midstream and upstream industries are almost at a loss. The downstream industry has a higher gross profit margin, which is also a cash cows business. The midstream and upstream industries have low gross profit, and most of them are question marks businesses, which require a strong parent company's capital investment, or diversified operations to reduce reliance on a single industry.
However, there are still a few businesses that have become cash cows businesses because of their products entering APPLE mobile phone suppliers. The rest of the loss-making businesses are undoubtedly difficult to operate in the battery industry. They must rely on cash cows businesses to reinvest in midstream, upstream industries that lack investing and government funds.
This paper studies the use of the cash flow statement of financial statements to change into free cash flow, and uses working capital and investment amount to evaluate where the cash cows business, stars business and question marks business are, so that cash cows business can invest in question marks business and strengthen the entire industry.
目次 Table of Contents

論文審定書………………………………………………………………………………………i
誌謝……………………………………………………………………………………………...ii
中文摘要……………………………………………………………………………………….. iii
英文摘要……………………………………………………………………………………….. iv
目錄……………………………………………………………………………………………… v
圖次……………………………………………………………………………………………. vii
表次……………………………………………………………………………………………viii
第一章 緒論……………………………………………………………………………………..1
1.1研究背景與動機………………………………………………………………………...1
1.2研究目的與問題 3
1.3研究範圍 3
1.4研究方法 3
1.5論文架構 4
第二章 文獻回顧 5
2.1 鋰電池材料之相關文獻 5
2.2 鋰電池的原理 9
2.3 鋰電池材料及製作 10
2.4 鋰電池芯製程 20
2.5 鋰電池芯設計 21
2.6 鋰電池芯之電性分析 22
2.7 鋰電池安全測試 23
2.8 鋰電池模組之應用 25
第三章 台韓日中美之產業結構 26
第四章 鋰電池產業生態與財務分析 30
4.1產業生態 30
4.2 資金供需狀況 32
4.3產業生態之金牛事業 56
4.4目前之問題兒童事業需要資金支持 56
第五章 結論與建議 57
參考文獻 59

參考文獻 References
參考文獻(References)
一、 中文部分
[1] 黃可龍,王兆翔與劉素琴(2007)。鋰離子電池原理與關鍵技術。北京:化學工業出版社。
[2] 其魯(2010)。電動汽車用鋰離子二次電池。北京:科學出版社。
二、 英文部分
[1] Armand, M.; Tarascon, J. M.2008, Building Better Batteries. Nat., 451, 652-657.
[2] C. Liu, K. Qian, D. Lei, B. Li, F. Kang, Y.-B. He(2018), Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite–SiOx power batteries under high temperature and discharge cycling conditions, J. Mater. Chem. A 6, 65-72.
[3] D. A. Notter, R, M. Ganch, R. Widmer(2008), Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles, Environ. Sci. Technol. 44, 6550-6556.
[4] D. Luo, S. Fang, Y. Tamiya, L. Yang, S. Hirano(2016), Countering the Segregation of Transition‐Metal Ions in LiMn1/3Co1/3Ni1/3O2 Cathode for Ultralong Life and High‐Energy Li‐Ion Batteries, Small 12, 4421-4430.
[5] F. Li, L. Kong, Y. Sun, Y. Jin, P. Hou(2018), Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries, J. Mater. Chem. A 6, 12344-12352.
[6] H.-H. Sun, A. Manthiram(2017), Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries, Chem. Mater. 29, 8486-8493.
[7] H. Liu, M. Wolf, K. Karki, Y.S. Yu, E.A. Stach, J. Cabana, K.W. Chapman, P. J. Chupas(2017), Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes, Nano Lett. 17, 3452-3457.

[8] H. Yang, H.H. Wu, M. Ge, L. Li, Y. Yuan, Q. Yao, J. Chen, L. Xia, J. Zheng, Z. Chen, J. Duan, K. Kisslinger, X.C. Zeng, W.K. Lee, Q. Zhang, J. Lu(2019), Simultaneously Dual Modification of Ni‐Rich Layered Oxide Cathode for High‐Energy Lithium‐Ion Batteries, Adv. Funct. Mater. 29, 1808825.
[9] J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y.S. Meng, K. Xu(2019), Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy Environ. Sci. 12, 780-794.
[10] J. Fu, D. Mu, B. Wu, J. Bi, H. Cui, H. Yang, H. Wu, F. Wu(2018), Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage, ACS Appl. Mater. Interfaces 10, 19704-19711.
[11] J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho(2018), Nickel‐Rich Cathodes: Prospect and Reality of Ni‐Rich Cathode for Commercialization, Adv. Energy Mater. 8, 1702028.
[12] J. Zhang, J. Zhang, X. Ou, C. Wang, C. Peng, B. Zhang(2019), Enhancing High-Voltage Performance of Ni-Rich Cathode by Surface Modification of Self-Assembled NASICON Fast Ionic Conductor LiZr2(PO4)3, ACS Appl. Mater. Interfaces 11, 15507-15516.
[13] L. de Biasi, A. Schiele, M. Roca-Ayats, G. Garcia, T. Brezesinski, P. Hartmann, J. Janek(2019), Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li‐Ion Batteries Obtained from In Situ Gas Analysis and Operando X‐Ray Diffraction, ChemSusChem 12, 2240.
[14] L. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, X. Sun, A. Du, X. Zhou, G. Cui(2019), A Novel Bifunctional Self‐Stabilized Strategy Enabling 4.6 V LiCoO2 with Excellent Long‐Term Cyclability and High‐Rate Capability, Adv. Sci. 6, 1900355.
[15] L. Zou, Z. Liu, W. Zhao, H. Jia, J. Zheng, Y. Yang, G. Wang, J.-G. Zhang, C. Wang(2018), Solid–Liquid Interfacial Reaction Trigged Propagation of Phase Transition from Surface into Bulk Lattice of Ni-Rich Layered Cathode, Chem. Mater. 30, 7016-7026.
[16] M.-T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed, K. Kato, J. Joyner, P.M. Ajayan(2017), A materials perspective on Li-ion batteries at extreme temperatures Nat. Energy 2, 17108.
[17] P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J.-G. Zhang(2018), Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy 3, 600-605.
[18] P. Yan, J. Zheng, M. Gu, J. Xiao, J.G. Zhang, C.M. Wang(2017), Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries, Nat. Commun. 8, 14101.
[19] S. Liu, J. Su, J. Zhao, X. Chen, C. Zhang, T. Huang, J. Wu, A. Yu(2018), Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures, J. Power Sources 393, 92-98.
[20] S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim, Y.-K. Sun(2017), Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives ACS, Energy Lett. 2, 196-223.
[21] S. Yang, P. Wang, H. Wei, L. Tang, X. Zhang, Z. He, Y. Li, H. Tong, J. Zheng(2019), Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries, Nano Energy 63, 103889.
[22] T. Chen, X. Li, H. Wang, X. Yan, L. Wang, B. Deng, W. Ge, M. Qu(2018), The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material, J. Power Sources 374, 1-11.
[23] Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Li, N., Hackney, S. A. 2005, Advances in Manganese-Oxide “Composite” Electrodes for Lithium-Ion Batteries. J. Mater. Chem., 15, 2257-2267.
[24] W.H. Kan, B. Deng, Y. Xu, A.K. Shukla, T. Bo, S. Zhang, J. Liu, P. Pianetta, B.- T. Wang, Y. Liu, G. Chen(2018), Understanding the Effect of Local Short-Range Ordering on Lithium Diffusion in Li1.3Nb0.3Mn0.4O2 Single-Crystal Cathode, Chem 4, 2108-2123.
[25] W. Li, A. Dolocan, P. Oh, H. Celio, S. Park, J. Cho, A. Manthiram(2017), Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries, Nat. Commun. 8, 14589.
[26] W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho(2015), Nickel‐Rich Layered Lithium Transition‐Metal Oxide for High‐Energy Lithium‐Ion Batteries, Angew. Chem. Int. Ed. 54, 4440–4457.
[27] W. Zhao, J. Zheng, L. Zou, H. Jia, B. Liu, H. Wang, M.H. Engelhard, C. Wang, W. Xu, Y. Yang, J.-G. Zhang(2018), High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases, Adv. Energy Mater. 8, 1800297.
[28] W. Zhao, L. Zou, J. Zheng, H. Jia, J. Song, M.H. Engelhard, C. Wang, W. Xu, Y. Yang, J.G. Zhang(2018), Simultaneous Stabilization of LiNi0.76Mn0.14Co0.10O2 Cathode and Lithium Metal Anode by Lithium Bis(oxalato)borate as Additive, ChemSusChem 11, 2211.
[29] X. Fan, G. Hu, B. Zhang, X. Ou(2020).Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries, Nano energy 70, 104450.
[30] X. He, C. Du, B. Shen, C. Chen, X. Xu, Y. Wang, P. Zuo, Y. Ma, X. Cheng, G. Yin(2017), Electronically Conductive Sb-doped SnO2 Nanoparticles Coated LiNi0.8Co0.15Al0.05O2 Cathode Material with Enhanced Electrochemical Properties for Li-ion Batteries, Electrochim. Acta 236, 273-279.
[31] Y. Liu, L. Tang, H. Wei, X. Zhang, Z. He, Y. Li, J. Zheng(2019), Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries, Nano Energy 65, 104043.
[32] Y. Xia, J. Zheng, C. Wang, M. Gu(2018), Designing principle for Ni-rich cathode materials with high energy density for practical applications, Nano Energy 49, 434-452.
[33] Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen(2018), Batteries and fuel cells for emerging electric vehicle markets, Nat. Energy 3, 279-289.
[34] Z. Xu, M.M. Rahman, L. Mu, Y. Liu, F. Lin(2018), Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A 6, 21859-21884.
三、相關網站
公開資訊觀測站,https://mopsfin.twse.com.tw/
新浪財經,https://finance.sina.com.cn/
科技新報,https://technews.tw/
鉅亨網,https://www.cnyes.com/
數位時代,https://www.bnext.com.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code