論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
大數據行銷研究與傳統行銷研究之比較-以餐飲業為例 A Study on the Comparison of Big Data Analysis and Traditional Methodology for Marketing Research of the Restaurant Industry |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
83 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-06-28 |
繳交日期 Date of Submission |
2021-07-13 |
關鍵字 Keywords |
大數據、內容分析、情緒分析、互動式視覺化、顧客意見、傳統研究方法 big data, content analysis, sentiment analysis, interactive visualization, customer opinions, traditional research methods |
||
統計 Statistics |
本論文已被瀏覽 366 次,被下載 42 次 The thesis/dissertation has been browsed 366 times, has been downloaded 42 times. |
中文摘要 |
隨著大數據概念的興起,行銷領域對於大數據研究的興趣也日益增長,不僅改變了行銷領域的研究方法,也提供了新的決策工具,如何將大數據的優勢與行銷概念結合為研究人員重要的任務。而大數據行銷研究相較於傳統的行銷研究在研究方法及成果有許多差異,亦提供了管理者更豐富的決策資訊。然而,即便學術上不乏分別使用兩種方法所做的研究,仍無研究針對其特性、方法與成果進行全面性的比較。 本研究將以餐飲業顧客意見為議題,利用大數據的「6Vs」特性為研究面向,針對傳統行銷研究與大數據行銷研究之差異進行比較,探討傳統行銷研究所能帶給管理者的貢獻與尚存的缺失,而後使用Yelp評論集,結合大數據分析常用的內容分析、情緒分析及互動式視覺化技巧,驗證於餐飲業顧客意見研究上,大數據行銷研究方法是否及如何補足傳統行銷研究方法的缺失。 由研究成果可知,兩者皆有其優缺點。而大數據行銷研究得以處理更為大量、多元、真實的數據,且可快速更新與連接多個數據源,更提供管理者更為全面、具備外部資訊的決策參考,展現大數據行銷研究的優勢及其為管理者於未來決策上所能帶來的貢獻。 |
Abstract |
With the rise of the concept of big data, the interest in big data research in marketing field has also increased. It has not only changed the research methods, but also provided new decision-making tools. How to combine the advantages of big data with marketing concepts is important for researchers. Compared with traditional marketing research, big data marketing research has many differences in research methods and results, and it provides managers with richer decision-making information. However, even if there is academic research using these two methods, there is still no research to make a comprehensive comparison of their characteristics, methods and results. This research focuses on customer opinions in the restaurant industry and uses the "6Vs" characteristics of big data as the research aspect. It compares the differences between big data analysis and traditional methodology for marketing Research. Then, it explores the contributions and remaining deficiencies that traditional marketing research brings to managers. After that, it uses the Yelp review data with the content analysis, sentiment analysis and interactive visualization techniques which are commonly used in big data analysis to verify whether and how big data marketing research methods complement the deficiencies in the traditional research of customer opinions in the restaurant industry. The results show that both methods have their pros and cons. And big data analysis can process larger, more diverse, and more realistic data. And the data can be updated quickly or connected with multiple data sources. This provides managers with a more comprehensive decision-making reference that also contains external information, and shows the advantages of big data marketing research as well as the contribution it can bring to managers in future decision-makings. |
目次 Table of Contents |
論文審定書.......................................................................i 誌謝...................................................................................ii 摘要..................................................................................iii Abstract............................................................................iv 圖次..................................................................................vi 表次.................................................................................vii 第一章 緒論......................................................................1 第一節 研究背景與動機..................................................1 第二節 研究目的..............................................................2 第三節 研究問題..............................................................3 第四節 研究架構..............................................................3 第二章 文獻探討..............................................................4 第一節 大數據定義與特性..............................................4 第二節 傳統的餐飲業顧客意見研究..............................6 第三節 大數據時代下的餐飲業顧客意見研究.............9 第三章 研究方法............................................................12 第一節 研究方法............................................................12 第二節 研究流程............................................................18 第四章 研究結果............................................................19 第一節 傳統研究與大數據研究的比較.......................19 第二節 傳統研究於餐飲業管理意涵上之缺失...........28 第三節 大數據行銷研究對於傳統研究缺失之補足...31 第五章 結論與建議.......................................................56 第一節 研究結論...........................................................56 第二節 研究貢獻...........................................................57 第三節 研究限制與未來研究方向...............................57 參考文獻........................................................................59 |
參考文獻 References |
一、中文文獻 (一) 期刊/書籍 王學川、楊克勤(2011)。社會調查的實用方法與典型實例。北京:清華大學出版社。 朱柔若(譯)(2000)。社會研究方法-質化與量化取向(原作者:Neuman, W. L.)。新北市:揚智文化。 風笑天(1994)。方法論背景中的問卷調查法。社會學研究,3,13-18。 蘇蘅、吳淑俊(1997)。電腦網路問卷調查可行性及回覆者特質的研究。新聞學研究,54,75-100。 (二) 網路資料 張志誠。翻轉5觀念,你也能讓大數據這頭大象跳舞!!。2021/05/20,取自:https://master.cheers.com.tw/article/191 盛美雲(民84年12月)。問卷法。2021/05/20,取自:https://terms.naer.edu.tw/detail/1681344/ 晴天社會福利基金會(民105年8月22日)。文獻分析法(Document Analysis)。2021/05/20,取自:https://www.sunnyswa.org.tw/12345/189-%E6%96%87%E7%8D%BB%E5%88%86%E6%9E%90%E6%B3%95%EF%BC%88document-analysis%EF%BC%89 葉鎮源(民101年10月)。情感偵測。2021/05/20,取自:https://terms.naer.edu.tw/detail/1678978/ 蘇宇暉、羅凱揚(民107年12月10日)。你了解你的消費者想『告訴』你什麼嗎?情感分析(Sentiment Analytics)。2021/05/20,取自:https://medium.com/marketingdatascience/%E4%BD%A0%E4%BA%86%E8%A7%A3%E4%BD%A0%E7%9A%84%E6%B6%88%E8%B2%BB%E8%80%85%E6%83%B3-%E5%91%8A%E8%A8%B4-%E4%BD%A0%E4%BB%80%E9%BA%BC%E5%97%8E-%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90-sentiment-analytics-2f06fd52f10c 二、英文文獻 (一) 期刊/書籍/論文 Auty, S. (1992). Consumer choice and segmentation in the restaurant industry. The Service Industries Journal, 12(3), 324‐339. doi: https://doi.org/10.1080/02642069200000042 Aulet, B. (2013). Disciplined entrepreneurship: 24 steps to a successful startup. John Wiley & Sons. Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M., ... & Widom, J. (2011). Challenges and opportunities with Big Data 2011-1. Cyber Center Technical Reports, 1, 1-16 Andaleeb, S.S., & Conway, C. (2006). Customer satisfaction in the restaurant industry: an examination of the transaction-specific model. Journal of Services Marketing, 20 (1), 3-11. doi: https://doi.org/10.1108/08876040610646536 Aparicio, M. & Costa, C.J. (2014). Data Visualization, Communication Design Quaterly, 3(1), 7-11. doi: https://doi.org/10.1145/2721882.2721883 Amado, A., Cortez, P., Rita, P., & Moro, S. (2017). Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. European Research on Management and Business Economics, 24(1), 1-7. doi: https://doi.org/10.1016/j.iedeen.2017.06.002 Ali, S. M., Gupta, N., Nayak, G. K., & Lenka, R. K. (2016). Big data visualization: Tools and challenges. 2nd International Conference on Contemporary Computing and Informatics (IC3I), 656-660. doi: 10.1109/IC3I.2016.7918044 Aguwa, C. C., Monplaisir, L., & Turgut, O. (2012). Voice of the customer: Customer satisfaction ratio based analysis. Expert Systems with Applications, 39(11), 10112-10119. doi: https://doi.org/10.1016/j.eswa.2012.02.071 Ariffin, A.A.M., Nameghi, E.N. & Zakaria, N.I. (2013). The effect of hospitableness and servicescape on guest satisfaction in the hotel industry, Canadian Journal of Administrative Sciences/Revue Canadienne Des Sciences De L’administration, 30(2), 127-137. doi: https://doi.org/10.1002/cjas.1246 Akoka, J., Wattiau, I., & Laoufi, N. (2017). Research on Big Data – A systematic mapping study. Computer Standards & Interfaces, 54(2), 105-115. doi: https://doi.org/10.1016/j.csi.2017.01.004 Ayoub, J., Zhou, F., Xu, Q., & Yang, J. (2019). Analyzing customer needs of product ecosystems using online product reviews. In International design engineering technical conferences and computers and information in engineering conference, 59186, V02AT03A002. doi: https://doi.org/10.1115/DETC2019-97642 Bose, R. (2008). Competitive intelligence process and tools for intelligence analysis. Industrial management & data systems, 108(4), 510-528. doi: https://doi.org/10.1108/02635570810868362 Băltescu, C. A.(2020).The relevance of online reviews for the development of restaurant industry. Annals of the „Constantin Brâncuşi” University of Târgu Jiu, Economy Series, 1, 42-47. Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2016). Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25(1), 1-24. doi: https://doi.org/10.1080/19368623.2015.983631 Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., & Schweidel, D. A. (2019). Uniting the tribes: Using text for marketing insight. Journal of Marketing, 84(1), 1-25. doi: https://doi.org/10.1177/0022242919873106 Bakhshi, S., Kanuparthy, P., & Shamma, D. A. (2015). Understanding online reviews: Funny, cool or useful?. CSCW '15: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, 1270-1276. doi: https://doi.org/10.1145/2675133.2675275 Babin, B.J., Lee, Y., Kim, E., & Griffin, M. (2005). Modeling consumer satisfaction and word-of-mouth: restaurant patronage in Korea. Journal of Services Marketing, 19(3), 133-139. doi: https://doi.org/10.1108/08876040510596803 Bergen, M., & Peteraf, M. A. (2002). Competitor identification and competitor analysis: a broad‐based managerial approach. Managerial and decision economics, 23(4‐5), 157-169. doi: https://doi.org/10.1002/mde.1059 Bilgihan, A., Seo, S. & Choi, J. (2018). Identifying restaurant satisfiers and dissatisfiers: suggestions from online reviews. Journal of Hospitality Marketing & Management, 27(5), 601-625. doi: https://doi.org/10.1080/19368623.2018.1396275 Cullen, F. (2005). Factors influencing restaurant selection in Dublin. Journal of Foodservice Business Research, 7(2), 53-85. doi: https://doi.org/10.1300/J369v07n02_05 Chang, K. C. (2013). How reputation creates loyalty in the restaurant sector. International Journal of Contemporary Hospitality Management, 25(4), 536-557. doi: https://doi.org/10.1108/09596111311322916 Chong, A.Y.L., Ch’ng E., Liu M.J., & Li B. (2017). Predicting consumer product demands via Big Data: the roles of online promotional marketing and online reviews. International Journal of Production Research, 55(17), 5142-5156. doi: https://doi.org/10.1080/00207543.2015.1066519 Czepiel, J. A., & Kerin, R. A. (2012). Competitor analysis. Handbook of marketing strategy, 41. Chaves, M. S., Laurel, A., Sacramento, N., & Pedron, C. D. (2014). Fine-grained analysis of aspects, sentiments and types of attitudes in restaurant reviews. Tourism & Management Studies, 10(1), 66-72. Clark, B. H., & Montgomery, D. B. (1999). Managerial identification of competitors. Journal of Marketing, 63(3), 67-83. doi: https://doi.org/10.1177/002224299906300305 Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209. doi: https://doi.org/10.1007/s11036-013-0489-0 Chen, M., Mao, S., Zhang, Y., & Leung, V. C. (2014). Big Data: Related Technologies, Challenges and Future Prospects. doi: 10.1007/978-3-319-06245-7 Chen, Y. & Xie, J. (2008). Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix. Management Science, 54(3), 477-491. doi: https://doi.org/10.1287/mnsc.1070.0810 Chen, C. P. & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information sciences, 275, 314-347. doi: https://doi.org/10.1016/j.ins.2014.01.015 De Mauro, A., Greco, M., & Grimaldi, M.(2015). What is big data? A consensual definition and a review of key research topics. AIP conference proceedings, 1644(1), 97-104. doi: https://doi.org/10.1063/1.4907823 Doody, O. & Noonan, M. (2013). Preparing and conducting interviews to collect data. Nurse Researcher, 20(5), 28-32. doi: http://doi.org/10.7748/nr2013.05.20.5.28.e327 Ducange, P., Pecori, R., & Mezzina, P. (2017). A glimpse on big data analytics in the framework of marketing strategies. Soft Computing, 22(1), 325-342. doi: https://doi.org/10.1007/s00500-017-2536-4 Fogarty, J.J. (2012). Expert opinion and cuisine reputation in the market for restaurant meals. Applied Economics, 44(31), 4115-4123. doi: https://doi.org/10.1080/00036846.2011.587780 Fast, E., Chen, B., & Bernstein, M.S. (2016). Empath: Understanding Topic Signals in Large-Scale Text. CHI '16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 4647-4657. doi: https://doi.org/10.1145/2858036.2858535 Favaretto, M., De Clercq, E., Schneble, C.O., & Elger, B.S. (2020). What is your definition of Big Data? Researchers’ understanding of the phenomenon of the decade. PLoS One, 15(2), e0228987. doi: https://doi.org/10.1371/journal.pone.0228987 Fan, S., Lau, R. Y., & Zhao, J. L. (2015). Demystifying big data analytics for business intelligence through the lens of marketing mix. Big Data Research, 2(1), 28-32. doi: https://doi.org/10.1016/j.bdr.2015.02.006 Gunden, N. (2017). How Online Reviews Influence Consumer Restaurant Selection. Graduate Theses and Dissertations, University of South Florida Scholar Commons. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144. doi: https://doi.org/10.1016/j.ijinfomgt.2014.10.007 Gregory, S., & Kim, J. (2004). Restaurant choice: the role of information. Journal of Foodservice Business Research, 7(1), 81-95. doi: https://doi.org/10.1300/J369v07n01_06 Gupta, S., McLaughlin, E., & Gomez, M. (2007). Guest satisfaction and restaurant performance. Cornell Hotel and Restaurant Administration Quarterly, 48(3), 284-298. doi: https://doi.org/10.1177/0010880407301735 Gueguen, N., & Petr, C. (2006). Odors and consumer behavior in a restaurant. International Journal of Hospitality Management, 25(2), 335-339. doi: https://doi.org/10.1016/j.ijhm.2005.04.007 Geetha, M., Singha, P., & Sinha, S. (2017). Relationship between customer sentiment and online customer ratings for hotels-An empirical analysis. Tourism Management, 61, 43-54. doi: https://doi.org/10.1016/j.tourman.2016.12.022 Guo, L., Sharma, R., Yin, L., Lu, R., & Rong, K. (2017). Automated competitor analysis using big data analytics. Business process management journal, 23(3), 735-762. doi: https://doi.org/10.1108/BPMJ-05-2015-0065 Gagić, S., Tešanović, D., & Jovičić, A. (2013). The vital components of restaurant quality that affect guest satisfaction. Turizam, 17(4), 166-176. doi: 10.5937/Turizam1304166G Gao, S., Tang, O., Wang, H., & Yin, P. (2018). Identifying competitors through comparative relation mining of online reviews in the restaurant industry. International Journal of Hospitality Management, 71, 19-32. doi: https://doi.org/10.1016/j.ijhm.2017.09.004 Hanaysha, J. (2016), Testing the effects of food quality, price fairness, and physical environment on customer satisfaction in fast food restaurant industry. Journal of Asian Business Strategy, 6(2), 31-40. doi: 10.18488/journal.1006/2016.6.2/1006.2.31.40 Hussein, DME-DM. (2018). A survey on sentiment analysis challenges. Journal of King Saud University - Engineering Sciences, 30(4), 330-338. doi: https://doi.org/10.1016/j.jksues.2016.04.002 Hatzijordanou, N., Bohn, N., & Terzidis, O. (2019). A systematic literature review on competitor analysis: status quo and start-up specifics. Management Review Quarterly, 69(4), 415-458. doi: https://doi.org/10.1007/s11301-019-00158-5 Hansen, K.V., Jensen, Ø. & Gustafsson, I.‐B. (2005), The meal experiences of á la Carte restaurant customers. Scandinavian Journal of Hospitality and Tourism, 5(2), 135‐151. doi: 10.1080/15022250510014417 International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 17-24. 10.1109/HPCC-SmartCity-DSS.2016.0014 Iglesias, M.P., & Guillen, M.J.Y. (2004). Perceived quality and price: their impact on the satisfaction of restaurant customers. International Journal of Contemporary Hospitality Management, 16(6), 373-379. doi: https://doi.org/10.1108/09596110410550824 Jurafsky, D., Chahuneau, V., Routledge, B. R., & Smith, N. A. (2014). Narrative framing of consumer sentiment in online restaurant reviews. First Monday, 19, 4-7. doi: http://dx.doi.org/10.5210/fm.v19i4.4944 Jeong, E.H., & Jang, S.C. (2010). Effects of restaurant green practices: which practices are important and effective?. Caesars Hospitality Research Summit, 13. Jeong, E. & Jang, S.S. (2011). Restaurant experiences triggering positive electronic word-of-mouth (eWOM) motivations. International Journal of Hospitality Management, 30(2), 356-366. doi: https://doi.org/10.1016/j.ijhm.2010.08.005 Jin, J., Ji, P., & Gu, R. (2016). Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence, 49, 61-73. doi: https://doi.org/10.1016/j.engappai.2015.12.005 Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In Proceedings of the fourth ACM international conference on Web search and data mining, 815-824. doi: https://doi.org/10.1145/1935826.1935932 Janvrin, D. J., Raschke, R. L., Dilla, W. N. (2014). Making sense of complex data using interactive data visualization. Journal of Accounting Education, 32(4), 31-48. doi: https://doi.org/10.1016/j.jaccedu.2014.09.003 Kanungo, N. T. (2017). Unit-17 Questionnaire Method. IGNOU. Köseoglu, M. A., Mehraliyev, F., Altin, M., & Okumus, F. (2020). Competitor intelligence and analysis (CIA) model and online reviews: integrating big data text mining with network analysis for strategic analysis. Tourism Review. doi: https://doi.org/10.1108/TR-10-2019-0406 Kang, D., & Park, Y. (2014). Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach. Expert Systems with Applications, 41(4), 1041-1050. doi: https://doi.org/10.1016/j.eswa.2013.07.101 Khan M.A., Uddin, M. F., & Gupta, N. (2014). Seven V's of Big Data understanding Big Data to extract value. In Proceedings of the 2014 zone 1 conference of the American Society for Engineering Education, IEEE, 1-5. doi: 10.1109/ASEEZone1.2014.6820689 Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: issues, challenges, tools and good practices. In 2013 Sixth international conference on contemporary computing (IC3), 404-409. IEEE. doi: 10.1109/IC3.2013.6612229 Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1. Lohr, S. (2012). The age of big data. New York Times, 11. Lynn, M., & Brewster, Z. W. (2018). A within-restaurant analysis of changes in customer satisfaction following the introduction of service inclusive pricing or automatic service charges. International Journal of Hospitality Management, 70, 9-15. doi: https://doi.org/10.1016/j.ijhm.2017.11.001 Ladhari, R., Brun, I., & Morales, M. (2008). Determinants of dining satisfaction and post-dining behavioral intentions. International Journal of Hospitality Management, 27(4), 563-573. doi: https://doi.org/10.1016/j.ijhm.2007.07.025 Lee, Y.L. & Hing, N. (1995). Measuring quality in restaurant operations: an application of the SERVQUAL instrument. International Journal of Hospitality Management, 14(3‐4), 293‐310. doi: https://doi.org/10.1016/0278-4319(95)00037-2 LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT sloan management review, 52(2), 21-32. Lau, A. L. S., & McKercher, B. (2004). Exploration versus acquisition: A comparison of first-time and repeat visitors. Journal of travel research, 42(3), 279-285. doi: https://doi.org/10.1177/0047287503257502 Liau, B.Y., & Tan, P.P. (2014). Gaining customer knowledge in low cost airlines through text mining. Industrial Management & Data Systems, 114(9), 1344-1359. doi: https://doi.org/10.1108/IMDS-07-2014-0225 Liu, P. & Tse, E.C.Y. (2018). Exploring factors on customers’ restaurant choice: an analysis of restaurant attributes. British Food Journal, 120(10), 2289-2303. doi: https://doi.org/10.1108/BFJ-10-2017-0561 Milliman, R.E. (1986). The Influence of Background Music on the Behavior of Restaurant Patrons. Journal of Consumer Research, 13(2), 286-289. doi: https://doi.org/10.1086/209068 Mitchell, R. C. (2004). Strategy formulation. Marshall, G. (2005). The purpose, design and administration of a questionnaire for data collection. Radiography, 11(2), 131-136. doi: https://doi.org/10.1016/j.radi.2004.09.002 Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt. Mohammed, I., Guillet, B. D., & Law, R. (2014). Competitor set identification in the hotel industry: A case study of a full-service hotel in Hong Kong. International Journal of Hospitality Management, 39, 29-40. doi: https://doi.org/10.1016/j.ijhm.2014.02.002 Morgan, N. A., & Rego, L. L. (2006). The value of different customer satisfaction and loyalty metrics in predicting business performance. Marketing science, 25(5), 426-439. doi: https://doi.org/10.1287/mksc.1050.0180 Marković, S., Raspor, S., Šegarić, K. (2010). Does restaurant performance meet customers’ expectations? An assessment of restaurant service quality using a modified dineserv approach. Tourism and hospitality management, 16(2), 181-195. Ma, Y., Xiang, Z., Du, Q., & Fan, W. (2018). Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71, 120-131. doi: https://doi.org/10.1016/j.ijhm.2017.12.008 Namkung, Y., & Jang, S. (2008). Are highly satisfied restaurant customers really different? A quality perception perspective. International Journal of Contemporary Hospitality Management, 20(2), 142-155. doi: https://doi.org/10.1108/09596110810852131 Nguyen, Q., Nisar, T.M., Knox, D., & Prabhakar, G.P. (2018), Understanding customer satisfaction in the UK quick service restaurant industry: the influence of the tangible attributes of perceived service quality, British Food Journal, 120(6), 1207-1222. doi: https://doi.org/10.1108/BFJ-08-2017-0449 North, A.C., Shilcock, A., & Hargreaves, D.J.(2003). The effect of musical style on restaurant customers' spending. Environment and Behaviour, 35(5), 712–718. doi: https://doi.org/10.1177/0013916503254749 Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of big data, 2(1), 1-21. doi: https://doi.org/10.1186/s40537-014-0007-7 Nakayama, M., & Wan, Y. (2019). The cultural impact on social commerce: A sentiment analysis on Yelp ethnic restaurant reviews. Information & Management, 56(2), 271-279. doi: https://doi.org/10.1016/j.im.2018.09.004 Oppermann, M. (2000). Tourism destination loyalty. Journal of travel research, 39(1), 78-84. doi: https://doi.org/10.1177/004728750003900110 Oussous, A., Benjelloun, F. Z., Lahcen, A. A., & Belfkih, S. (2018). Big Data technologies: A survey. Journal of King Saud University-Computer and Information Sciences, 30(4), 431-448. doi: https://doi.org/10.1016/j.jksuci.2017.06.001 Pacific Asia Travel Association. (1997). Issues & Trends, Pacific Asia Travel. San Francisco: Pacific Asia Travel Association. Pantelidis, I.S. (2010). Electronic meal experience: A content analysis of online restaurant comments. Cornell Hospitality Quarterly, 51(4), 483-491. doi: https://doi.org/10.1177/1938965510378574 Peng, R. (2021). Analysis of Computer Information Processing Technology Based on Unstructured Data. In 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 1222-1225. doi: 10.1109/IPEC51340.2021.9421190 Patgiri, R., & Ahmed, A. (2016). Big Data: The V’s of the Game Changer Paradigm. 18th IEEE International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd Phellas, C.N., Bloch, A., & Seale, C. (2011). Structured methods: interviews, questionnaires and observation. Researching society and culture, 3, 181-205. Pecotić, M., Bazdan, V., & Samardžija, J. (2014). Interior design in restaurants as a factor influencing customer satisfaction. RIThink, 4, 10-14. Parikh, A., Behnke, C., Vorvoreanu, M., Almanza, B., & Nelson, D. (2014). Motives for reading and articulating user-generated restaurant reviews on Yelp.Com. Journal of Hospitality and Tourism Technology, 5(2), 160-176. doi: https://doi.org/10.1108/JHTT-04-2013-0011 Patur, G., Balachandrudu, K.E., & Yadav, S. K.(2019). COMPETITOR ANALYSIS BY USING BIG DATA IN MOBILE APPLICATIONS. The International journal of analytical and experimental modal analysis, 11(1), 145-155. Perera, I.K.C.U. & Caldera, H.A. (2017). Aspect based opinion mining on restaurant reviews. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), 542-546. doi: 10.1109/CIAPP.2017.8167276 Pant, G., & Sheng, O. R. L. (2015). Web footprints of firms: Using online isomorphism for competitor identification. Information Systems Research, 26(1), 188-209. doi: https://doi.org/10.1287/isre.2014.0563 Pedraja, M., & Yague, J. (2001). What information do customers use when choosing a restaurant?. International Journal of Contemporary Hospitality Management, 13(6), 316-318. doi: https://doi.org/10.1108/EUM0000000005966 Rai, R. (2012). Identifying key product attributes and their importance levels from online customer reviews. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 45028, 533-540. doi: https://doi.org/10.1115/DETC2012-70493 Rodríguez-López, M.E., Alcántara-Pilar, J.M., Del Barrio-García, S., & Muñoz-Leiva, F. (2020). A review of restaurant research in the last two decades: a bibliometric analysis. International Journal of Hospitality Management, 87, 102387. doi: https://doi.org/10.1016/j.ijhm.2019.102387 Ryu, K., & Han, H.(2011). New or repeat customers: how does physical environment influence their restaurant experience?. International Journal of Hospitality Management, 30(3), 599-611. doi: https://doi.org/10.1016/j.ijhm.2010.11.004 Ryu, K., Lee, H. R., & Kim, W. G. (2012). The influence of the quality of the physical environment, food, and service on restaurant image, customer perceived value, customer satisfaction, and behavioral intentions. International journal of contemporary hospitality management, 24(2), 200-223. doi: 10.1108/09596111211206141 Stemler, S. (2000). An overview of content analysis. Practical Assessment, Research, and Evaluation, 7(17), 1-6. doi: https://doi.org/10.7275/z6fm-2e34 Srisiriwongchai, N. (2017). The impact of online reviews on choosing a restaurant of Thai millennial internet users. College of Management Mahidol University E-Thesis and Thematic Paper. Siering, M. (2021). Leveraging online review platforms to support public policy: Predicting restaurant health violations based on online reviews. Decision Support Systems, 143, 113474. doi: https://doi.org/10.1016/j.dss.2020.113474 Schwepker Jr., & Charles, H. (2003). Customer-oriented selling: A review, extension, and directions for future research. Journal of Personal Selling & Sales Management, 23(2), 151-171. doi: 10.1080/08853134.2003.10748995 Seddon, J. J., & Currie, W. L. (2017). A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70, 300-307. doi: https://doi.org/10.1016/j.jbusres.2016.08.003 Smith, K. G., Grimm, C. M., & Gannon, M. J. (1992). Dynamics of competitive strategy. Sage Publications, Inc. Sulek, J. M., & Hensley, R. L. (2004). The Relative Importance of Food, Atmosphere, and Fairness of Wait: The Case of a Full-service Restaurant. Cornell Hotel and Restaurant Administration Quarterly, 45(3), 235-247. doi: https://doi.org/10.1177/0010880404265345 Sabir, R. I., Irfan, M., Akhtar, N., Pervez, M. A., & ur Rehman, A. (2014). Customer satisfaction in the restaurant industry; Examining the model in local industry perspective. Journal of Asian Business Strategy, 4(1), 18-31. Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54(5), 758-790. doi: https://doi.org/10.1016/j.ipm.2018.01.010 Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263-286. doi: https://doi.org/10.1016/j.jbusres.2016.08.001 Sezgen, E., Mason, K. J., & Mayer, R. (2019). Voice of airline passenger: A text mining approach to understand customer satisfaction. Journal of Air Transport Management, 77, 65-74. doi: https://doi.org/10.1016/j.jairtraman.2019.04.001 Tsubiks, O., & Kešelj, V. (2018). A Market Analytics Approach to Restaurant Review Data. Proceedings of the ACM Symposium on Document Engineering 2018, 16, 1-7. doi: https://doi.org/10.1145/3209280.3209524 Tian, G., Lu, L., & McIntosh, C. (2021). What factors affect consumers’ dining sentiments and their ratings: Evidence from restaurant online review data. Food Quality and Preference, 88, 104060. doi: https://doi.org/10.1016/j.foodqual.2020.104060 Valkanas, G., Lappas, T., & Gunopulos, D. (2017). Mining competitors from large unstructured datasets. IEEE Transactions on Knowledge and Data Engineering, 29(9), 1971-1984. doi: 10.1109/TKDE.2017.2705101 Vu, H.Q., Li, G., Law, R., & Zhang, Y.(2017). Exploring tourist dining preferences based on restaurant reviews. Journal of Travel Research, 58(1), 149-167. doi: https://doi.org/10.1177/0047287517744672 Wall, E.A., & Berry, L.L. (2007). The combined effects of the physical environment and employee behavior on customer perception of restaurant service quality. Cornell Hotel and Restaurant Administration Quarterly, 48(1), 59-69. doi: https://doi.org/10.1177/0010880406297246 Wang, C.H., & Chen, S.C. (2012). The relationship of full-service restaurant attributes, evaluative factors and behavioral intention. International Journal of Organizational Innovation, 5(2), 248-262. Weiss, R., Feinstein, A.H., & Dalbor, M.C. (2004). Customer satisfaction of theme restaurant attributes and their influence on return intent. Journal of Foodservice Business Research, 7(1), 23-41. doi: https://doi.org/10.1300/J369v07n01_03 Wetzer, I.M., Zeelenberg, M., & Pieters, R. (2007). Never eat in That Restaurant, I did!: Exploring why people engage in negative word-of-mouth communication. Psychology & Marketing, 24(8), 661-680. doi: https://doi.org/10.1002/mar.20178 Xu, K., Liao, S. S., Li, J., & Song, Y. (2011). Mining comparative opinions from customer reviews for competitive intelligence. Decision support systems, 50(4), 743-754. doi: https://doi.org/10.1016/j.dss.2010.08.021 Yafooz, W. M., Abidin, S. Z., Omar, N., & Idrus, Z. (2013). Managing unstructured data in relational databases. In 2013 IEEE Conference on Systems, Process & Control (ICSPC), 198-203. doi: 10.1109/SPC.2013.6735131 Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13-53. doi: https://doi.org/10.1080/17538947.2016.1239771 Ylijoki, O., & Porras, J. (2016). Perspectives to definition of big data: a mapping study and discussion. Journal of Innovation Management, 4(1), 69-91. doi: https://doi.org/10.24840/2183-0606_004.001_0006 Yan, X., Wang, J., & Chau, M. (2015). Customer revisit intention to restaurants: Evidence from online reviews. Information Systems Frontiers, 17(3), 645-657. doi: https://doi.org/10.1007/s10796-013-9446-5 Ye, F., Xia, Q., Zhang, M., Zhan, Y., & Li, Y. (2020). Harvesting Online Reviews to Identify the Competitor Set in a Service Business: Evidence From the Hotel Industry. Journal of Service Research. doi: https://doi.org/10.1177/1094670520975143 Yuksel, A., & Yuksel, F. (2003). Measurement of tourist satisfaction with restaurant services: A segment-based approach. Journal of Vacation Marketing, 9(1), 52-68. doi: https://doi.org/10.1177/135676670200900104 Zhu, J., Wang, H., Zhu, M., Tsou, B. K., & Ma, M. (2011). Aspect-based opinion polling from customer reviews. IEEE Transactions on affective computing, 2(1), 37-49. doi: 10.1109/T-AFFC.2011.2 Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111-121. doi: https://doi.org/10.1016/j.ijhm.2018.03.017 Zhou, L., Ye, S., Pearce, P.L., & Wu, M.Y. (2014). Refreshing hotel satisfaction studies by reconfiguring customer review data. International Journal of Hospitality Management, 38, 1-10. doi: https://doi.org/10.1016/j.ijhm.2013.12.004 (二) 網路資料 M. L. Jockers. (2015). Syuzhet: Extract Sentiment and Plot Arcs from Text. Retrieved from https://github.com/mjockers/syuzhet |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |