論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
風格因子增值高收益債投資組合 High Yield Bond Investment Portfolio Enhanced by Multi-Style Factor |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
80 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-06-29 |
繳交日期 Date of Submission |
2022-07-21 |
關鍵字 Keywords |
Barra 風險模型、高收益債券、固定收益因子模型、增值指數基金、因子擇時模型 Barra risk model, High yield bond, Fixed income Factor Model, Enhanced Index Fund, Factor Timing Model |
||
統計 Statistics |
本論文已被瀏覽 263 次,被下載 68 次 The thesis/dissertation has been browsed 263 times, has been downloaded 68 times. |
中文摘要 |
本研究目的為討論高收益債券的因子投資,並透過增強投資組合提供給投資者相較被動投資表現更好的高收益債投資組合產品。 因為資訊揭露較不透明、價格更難估計且有限壽命等諸多因素,皆使處理債券資訊更為繁雜,而這也使得因子投資在債券上的研究相較股票市場研究慢。近來隨著眾多資產管理公司推出債券 ETF 商品並受到投資者愛戴,學術界與業界越佳關注固定收益投資組合的分析,而這也成為本研究探討高收益債券因子投資的動機。 我們首先藉由 Barra Risk Model Handbook (2007) 建構純因子投資組合並將市場風險做歸因,接著用五分位數因子投資組合及訊息係數衡量因子是否有效,研究發現較有效的五個因子,分別為 Size、Value、Carry、Liquidity 與 Duration 皆能帶來相較指數更高的風險調整後報酬與較小的風險回撤,其中又以Value 因子增值指數的 alpha 表現最佳,高達 0.85%,而其在 Tracking error 上相較其他因子增值也無較明顯,因此 Value 具有 0.97 Information ratio 的好表現。 最後,我們也建構全因子與僅採用較佳因子的不同多因子投資組合,研究結果顯示當加入了因子擇時的策略後,採用較佳因子搭配估值與積極評分的動能擇時策略可以得到 1.36 的 Sharpe ratio,而這也是本研究表現最好的風險調整後報酬 ,並且此策略也將單純動能擇時有最大風險回撤 19.74% 的問題改善至19.65%。 |
Abstract |
This study aims to discuss factor investing in high yield bonds and provide investors with enhanced portfolio products that perform better in high yield bonds than passive investments. Factor investing in bonds has been slower than equity market research because of the complexity of handling bond information due to several factors, including less transparent information disclosure, more difficult price estimation, and limited life. With the recent launch of bond ETFs by many asset management firms and their popularity among investors, academics and the industry are increasingly interested in the analysis of fixed income portfolios, which is the motivation for this study to examine factor investing in high yield bonds. We first construct a pure factor portfolio using the Barra Risk Model Handbook (2007) and attribute the market risk. Then, we measured the effectiveness of the factors using quintile factor portfolios and information coefficients. The five more effective factors are size, value, carry, liquidity and duration, which can generate higher risk-adjusted returns and lower drawdown than the index. Among them, value has the best alpha performance with 0.85%, and its tracking error is not significantly higher than other factors, so value has a good performance with a 0.97 information ratio. Finally, we construct different multi-factor portfolios with all-factor and partial factor screening enhanced portfolios. The result of this study shows that using partial factor screening enhanced portfolio with valuation and aggressive-scoring momentum timing achieves a Sharpe ratio of 1.36, which is the best risk-adjusted return in this study. In addition, this strategy also improves the maximum drawdown of 19.74% to 19.65% for momentum alone. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation for Research 4 1-3 Research Purpose 5 Chapter 2 Literature Review 7 2-1 Modern Portfolio Theory 7 2-2 Multi-Factor Model 8 2-3 The Factors of Fixed-Income Securities 9 2-4 Factor Timing Model 12 Chapter 3 Data and Methodology 14 3-1 Empirical Process 14 3-2 Data Description 16 3-3 Definition of Bond Factors 19 3-3-1 Size 19 3-3-2 Value 19 3-3-4 Momentum 20 3-3-5 Volatility 21 3-3-6 Liquidity 21 3-3-7 Interest-Rate Risk Parameters: Duration and Convexity 22 3-4 Establishing Factor Exposure 22 3-4-1 Missing Value Process 22 3-4-2 Standardizing Descriptors 23 3-4-3 Compressing Outliers 23 3-5 Multi-factor Model 24 3-6 Quantile Portfolio and Information Coefficient 28 3-7 Factor Enhanced Model 30 3-8 Factor Timing Method 32 3-8-1 Momentum timing 32 3-8-2 Value timing: 33 3-8-3 Combined strategy 34 3-8-4 Combining the results of the factor timing weights into the model 35 Chapter 4 Empirical Result 37 4-1 Empirical Results of the Factor Model 37 4-1-1 Multicollinearity Test and Gram–Schmidt process 37 4-1-1. Factor Result 38 4-1-2 Explanatory Power of the Model 43 4-2 Single-Factor Model 44 4-2-1 Quantile Portfolio and Information Coefficient Analysis 44 4-2-2 Index Tracking and Single-Factor Enhancing 51 4-3 Multi-Factor Model and Factor Timing 54 4-3-1 Multi-Factor Model 54 4-3-2 Factor Timing 55 Chapter 5 Conclusions and Suggestions 63 5-1 Conclusions 63 5-2 Suggestions 64 References 67 |
參考文獻 References |
Andrew Ang, Robert J. Hodrick, Yuhang Xing, Xiaoyan Zhang, High idiosyncratic volatility and low returns: International and further US evidence. Journal of Financial Economics, 2009. 91(1): pp. 1-23. Asness, C., A. Ilmanen, and T. Maloney, Market timing: Sin a little resolving the valuation timing puzzle. Journal of Investment Management, 2017. 15(3): pp. 23-40. Baker, M. and J. Wurgler, Investor sentiment and the cross‐section of stock returns. The journal of Finance, 2006. 61(4): pp. 1645-1680. Barra, M., Barra risk model handbook. MSCI Barra Applied Research, 2007. Bender, J., Sun, X., Thomas, R., & Zdorovtsov, V., The promises and pitfalls of factor timing. The Journal of Portfolio Management, 2018. 44(4): pp. 79-92. Ben-Dor, G. and G. Ben-Dor, Shock wave reflection phenomena. Vol. 2. 2007: Springer. Biner, B., R.C. Smith, and P. Ward, The Barra Europe Equity Model (EUE3). MSCI Research Notes, 2009. Brooks, J., D. Palhares, and S. Richardson, Style investing in fixed income. The Journal of Portfolio Management, 2018. 44(4): pp. 127-139. Carhart, M.M., On persistence in mutual fund performance. The Journal of finance, 1997. 52(1): pp. 57-82. Chen, A.Y. and M. Velikov, Accounting for the anomaly zoo: A trading cost perspective. Available at SSRN, 2017. 3073681. Cliff Asness, Jacques A. Friedman, Robert Krail and John M. Liew, Style timing: Value versus growth. The Journal of Portfolio Management, 2000. 26(3): pp. 50-60. Connor, G., The three types of factor models: A comparison of their explanatory power. Financial Analysts Journal, 1995. 51(3): pp. 42-46. Ehsani, S., & Linnainmaa, J. T. (2021). Factor momentum and the momentum factor. The Journal of Finance. ISO 690 Fama, E.F. and K.R. French, A five-factor asset pricing model. Journal of financial economics, 2015. 116(1): pp. 1-22. Fama, E.F. and K.R. French, Common risk factors in the returns on stocks and bonds. Journal of financial economics, 1993. 33(1): pp. 3-56. Figelman, I., Black–Litterman with a factor structure applied to multi-asset portfolios. The Journal of Portfolio Management, 2017. 44(2): pp. 136-155. Frazzini, A. and L.H. Pedersen, Betting against beta. Journal of Financial Economics, 2014. 111(1): pp. 1-25. Gordon, M. J. (1962). The investment, financing and valuation of the corporation, Homewood. IL. Irwin. Haddad, V., S. Kozak, and S. Santosh, Factor timing. The Review of Financial Studies, 2020. 33(5): pp. 1980-2018. Henke, H., Kaufmann, H., Messow, P. and Fang-Klingler, J., Factor Investing in Credit. The Journal of Index Investing, 2020. 11(1): pp. 33-51. Hodges, P., Hogan, K., Peterson, J. R., & Ang, A. (2017). Factor timing with cross-sectional and time-series predictors. The Journal of Portfolio Management, pp. 30-43. Homer, S. and M.L. Leibowitz, Inside the yield book. New York: Bloomberg, 2004. Houweling, P. and J. Van Zundert, Factor investing in the corporate bond market. Financial Analysts Journal, 2017. 73(2): pp. 100-115. Hurst, B., Y.H. Ooi, and L.H. Pedersen, Demystifying managed futures. Journal of Investment Management, 2013. 11(3): pp. 42-58. Jostova, G., Nikolova, S., Philipov, A., Christof W., Momentum in corporate bond returns. The Review of Financial Studies, 2013. 26(7): pp. 1649-1693. Jegadeesh, N. and S. Titman, Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 1993. 48(1): pp. 65- 91. Lintner, J., Security prices, risk, and maximal gains from diversification. The Journal of finance, 1965. 20(4): pp. 587-615. Macaulay, F. (1938). The Movements of Interest Rates, Bond Yields and Stock Prices in the United States Since 1856. National Bureau of Economic Research. Markowitz, H. M. (March 1952). Portfolio Selection. The Journal of Finance, 7(1), pp. 77– 91. Menchero, J. and A. Morozov, Improving risk forecasts through cross-sectional observations. The Journal of Portfolio Management, 2015. 41(3): pp. 84-96. Mendiratta, R., H.D. Varsani, and G. Giese, Foundations of ESG investing in corporate bonds: How ESG affected corporate credit risk and performance. MSCI Research Insight, 2020. Moskowitz, T.J., Y.H. Ooi, and L.H. Pedersen, Time series momentum. Journal of financial economics, 2012. 104(2): pp. 228-250. Pospisil, L. and J. Zhang, Momentum and reversal effects in corporate bond prices and credit cycles. The Journal of Fixed Income, 2010. 20(2): pp. 101-115. Qian, E., Risk parity portfolios: Efficient portfolios through true diversification. Panagora Asset Management, 2005. Ralph S.J. Koijen, Tobias J. Moskowitz, Lasse Heje Pedersen, Evert B. Vrugt, Carry. Journal of Financial Economics, 2018. 127(2): pp. 197- 225. Robert D. Arnott, Mark Clements, Vitali Kalesnik and Juhani T. Linnainmaa, Factor momentum. Available at SSRN 3116974, 2021. Ross, S.A., The arbitrage theory of capital asset pricing. Journal of Economic Theory, 1976. 13(3): pp. 341-360. Sharpe, W.F., Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 1964. 19(3): pp. 425-442. Shih-Yun Chen, Quasi-Passive Investment Portfolio: Corporate Bond Enhanced by Multi-Style Factors [Unpublished master’s thesis]. Department of Finance, National Sun Yat-sen University, 2020. Tong, R., 因子择时系列研究之一—基于动量效应的风格择时. China Industrial Securities CO., LTD, 2013. Ung, D. and P. Luk, What Is in Your Smart Beta Portfolio? A Fundamental and Macroeconomic Analysis. The Journal of Index Investing, 2016. 7(1): pp. 49-77. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |