Responsive image
博碩士論文 etd-0625122-190011 詳細資訊
Title page for etd-0625122-190011
論文名稱
Title
價差估計模型之研究—以KOSPI高頻交易資料為例
A Comparison Study on Range-based Spread Estimators:Evidence from High-frequency KOSPI Data
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
44
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-19
繳交日期
Date of Submission
2022-07-25
關鍵字
Keywords
買賣價差、日內型態、高低價差估計法、Roll估計法、高頻交易
Bid-ask spread, Intraday pattern, High-low spread estimators, Roll spread estimators, High-frequency trading
統計
Statistics
本論文已被瀏覽 302 次,被下載 39
The thesis/dissertation has been browsed 302 times, has been downloaded 39 times.
中文摘要
在本文中,我們透過KOSPI每分鐘的高頻資料,將交易日劃分為不同日內時段來估算買賣價差。我們比較了三種不同計算價差的方法,包括計算結果為日頻的Roll (1984) 估計法,與計算結果可以高於日頻的 Cowin and Schultz (2012) 估計法 (CS) 與 Li, Lambe and Adegbite (2018) 的 Basic High and Low (BHL) 估計法。我們的實證結果顯示Roll價差每天的平均值和標準差隨著樣本頻率的增加而減小。而高低價差模型的標準差同樣隨樣本區間縮小而減少,並估計價差在半天區間時較每日與十分鐘區間有較少為負的結果。另外,與BHL估計模型相較下,CS模型估計的平均值和標準差更小。對於使用高低價估計的價差模型,我們發現存在日內型態,並且所得出的價差會隨交易時間經過變小。其中日內型態也同樣呈現於負價差,透過價差為負值佔全部價差的比例來看,CS模型的估計值在開盤時較BHL模型容易為負值,並在接近中午時顯示相反的結果。我們推斷較高百分比的CS價差可能是由較高的價格波動導致的。另外,我們確認了隔夜報酬對日價差的影響,當隔夜報酬較大且為負時,效果更強。
Abstract
In this paper, we examine the performance of three bid-ask spread estimators using high-frequency KOSPI data by dividing each trading day into several intraday periods. The three methods are Roll (1984), Cowin and Schultz (2012), hereafter CS, and the Basic High and Low (BHL) estimator of Li, Lambe and Adegbite (2018). With high-frequency data, the Roll estimator gives daily spread values, while the CS and BHL methods give spread estimates for intraday intervals. Our empirical results show that the mean value and standard deviation of daily Roll spreads decrease with higher sampling frequencies. High-low spreads also have decreasing standard declines when interval is smaller and lower percentage of negative spreads at half-day interval than one-day and 10-minute intervals. Compared with BHL estimator, CS estimator has smaller mean and standard deviation. There exists an intraday pattern in CS and BHL spreads, with average spread values decreasing as trading hours proceed. We also study the distribution of negative spread values and find that CS spreads are more likely to be negative than BHL spreads at market open, but this relationship reverses near the middle of day. We infer that the higher percentage of negative CS spreads may be due to higher price volatility. In addition, we identify overnight returns as a plausible factor for estimated spreads being negative, and this effect is stronger when overnight returns are negative.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures v
List of Tables vi
1 Introduction 1
2 Literature review 5
3 Data 8
4 Method and Model 17
4.1 The Roll estimator 17
4.2 The CS estimator 18
4.3 The BHL estimator 20
5 Estimation and results 22
5.1 Summary statistics 22
5.2 Intraday pattern of CS and BHL estimators 23
5.3 Overnight Return and CS, BHL estimators 26
6 Conclusions 35
References 36



參考文獻 References
Abdi, F., & Ranaldo, A. (2017). A simple estimation of bid-ask spreads from daily close, high, and low prices. Review of Financial Studies, 30(12), 4437-4480.
Bleaney, M., & Li, Z. (2015). The performance of bid-ask spread estimators under less than ideal conditions. Studies in Economics and Finance, 32(1), 98-127.
Bleaney, M., & Li, Z. (2016). A new spread estimator. Review of Quantitative Finance and Accounting, 47(1), 179-211.
Bouchaud, J.-P., Bonart, J., Donier, J., & Gould, M. D. (2018). Trades, Quotes and Prices: Financial Markets Under the Microscope. Cambridge University Press.
Chen, X., Linton, O., & Yi, Y. (2017). Semiparametric identification of the bid–ask spread in extended Roll models. Journal of Econometrics, 200(2), 312-325.
Chen, X., Lambe, B., & Adegbite, E. (2018). New bid-ask spread estimator from daily high and low prices. International Review of Financial Analysis, 60, 69-86.
Chen, X., Linton, O., Schneeberger, S., & Yi, Y. (2019). Semiparametric estimation of the bid–ask spread in extended Roll models. Journal of Econometrics, 208(1), 160-178.
Chordia, T., Roll, R., & Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal of Financial Economics, 87, 249-268.
Corwin, S. A., & Schultz, P. (2012). A Simple Way to Estimate Bid-Ask Spreads from Daily High and Low Prices. Journal of Finance, 67(2), 719-759.
Corwin, S. A. (2014). Dealing with Negative Values in the High-Low Spread Estimator - a comment on Kim and Lee (2014)
Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. The Journal of Business, 53(1), 67-78.
Gao, L., Han, Y., Li, S. Z., & Zhou, G. (2018). Market intraday momentum. Journal of Financial Economics, 129(2), 394-414.
Glosten, L. R. & Milgrom, P. R. (1985). Bid, Ask and Transaction Prices in a
Specialist Market with Heterogeneously Informed Traders, Journal of Financial Economics 14, 71-100.
Goyenko, R. Y., Holden, C. W. & Trzcinka, C. A. (2009). Do liquidity measures measure liquidity? Journal of Financial Economics, 92, 153-181.
Harris, L. (1990). Statistical Properties of the Roll Serial Covariance Bid/Ask Spread Estimator. The Journal of Finance, 45(2), 579-590.
Hasbrouck, J. (2004) Liquidity in the futures pits: inferring market dynamics from incomplete data, Journal of Financial and Quantitative Analysis, 39, 305-326.
Huang, R. D., & Stoll, H. R. (1997). The components of the bid-ask spread: a general approach, Review of Financial Studies, 10(4), 995-1034.
Kim, S.-H., & Lee, K.-H. (2014). Pricing of liquidity risks: evidence from multiple liquidity measures. Journal of Empirical Finance, 25, 112-133.
Koch, A. K. (2007). Adverse selection in financial markets. University of London lecture notes.
Lai, C. Y., Eom, C., & Tsai, P. C. (2022) Market intraday momentum: evidence from KOSPI index, National Sun Yat-sen University working paper.
Le, H., & Gregoriou, A. (2020). How do you capture liquidity? A review of the literature on low-frequency stock liquidity. Journal of Economic Surveys, 34(5), 1170-1186.
Lesmond, D. A., Ogden, J. P., & Trzcinka, C. A. (1999). A New Estimate of Transaction Costs. The Review of Financial Studies, 12(5), 1113-1141.
Lin, C.-C. (2014). Estimation accuracy of high-low spread estimator. Finance Research Letters, 11(1), 54-62.
Li, Z., Lambe, B., & Adegbite, E. (2018). New bid-ask spread estimators from daily high and low prices. International Review of Financial Analysis, 60, 69-86.
Li, Z., Sakkas, A. & Urquhart, A. (2021). Intraday time series momentum: Global evidence and links to market characteristics. Journal of Financial Markets, 57, 100619.
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return, Journal of Business, 53(1), 61-65.
Roll, R. (1984). A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market. Journal of Finance, 39(4), 1127-1139.
Tsai, P.-C., & Tsai, C.-M. (2021). Estimating the proportion of informed and speculative traders in financial markets: evidence from exchange rate. Journal of Economic Interaction and Coordination, 16, 443-479.
Zhang, Y., Ma, F., & Zhu B. (2019). Intraday momentum and stock return predictability: Evidence from China. Economic Modelling, 76, 319-329.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code