Responsive image
博碩士論文 etd-0626122-115021 詳細資訊
Title page for etd-0626122-115021
論文名稱
Title
Corwin-Schultz價差估計量與價格跳躍,由日內韓國綜合股價指數(KOSPI)資料實證
The Corwin-Schultz spread estimator and price jump: Evidence from intraday KOSPI data
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-12
繳交日期
Date of Submission
2022-07-26
關鍵字
Keywords
價格跳躍、高頻交易數據、流動性測度、買賣價差、韓國綜合股價指數(KOSPI)
price jump, high frequency data, liquidity measure, bid-ask spread, KOSPI
統計
Statistics
本論文已被瀏覽 218 次,被下載 0
The thesis/dissertation has been browsed 218 times, has been downloaded 0 times.
中文摘要
為了研究價格跳躍和流動性之間的關係,我們藉由韓國綜合股價指數(KOSPI) 日內資料並採用非母數價格跳躍穩健度檢驗模型和流動性替代測度。價格跳躍穩健度檢驗部分,我們採用Lee-Mykland檢驗方法。至於流動性部分,我們採用 Corwin-Schultz 價差估計量作為流動性的代理變數。除此之外,我們將 KOSPI 價格時間序列資料整理為日內兩分鐘頻率,以更好地在微結構噪音和精細取樣之間取得平衡。實證結果顯示有證據表明存在多個價格跳躍與負價差之間的連接,而其中一些連結分佈在 10% 樣本交易天數中價差值最小之天數。另外,為了進一步討論價格跳躍造成的波動度,我們擷取實際波動度(Realized Variance)和Bi-power波動度(Bi-power variance)之間的差值。接著我們用實際波動度和上述擷取之差值和其兩變數上一期分別對價差進行簡單回歸。我們發現,實際波動度與價差呈現正相關,並且上一期的正負方向相同。然而,RV-BP及其上一期呈現正負相反的關係。另外實證結果也證實了Corwin-Schultz 估計量的理論限制,即當同一天或前一天的波動度較大時,Corwin-Schultz 價差估計值可能為負值。
Abstract
To study the relationship between jumps and liquidity, we employ non-parametric price jump robust test and liquidity proxy measure for KOSPI intraday data. For jump robust test, we adopt the Lee-Mykland test. For liquidity measure, we use the Corwin-Schultz spread measure as the proxy of liquidity. Furthermore, we set KOSPI time-series price data into two-minute frequency to better strike a balance between microstructure noise and finite sampling. Our results show solid evidence that there are several connections between price jumps and negative values of Corwin-Schultz spread. In particular, some of these connections are within the 10% of trading days with minimum spread values. Moreover, to further discuss the volatility contributed by jumps, we take the difference between Realized Variance and Bi-power Variance. Then we use realized variance and the difference, as well as their lag values, to do simple regressions on the spread respectively. We find that realized variance is positively related to spread and has the same direction at lag value. However, the difference and its lag value reveal different direction of correlation. The results also confirm and partially explain the theoretical limitation in Corwin-Schultz spread estimator – when volatility on the same day or previous day is large, the Corwin-Schultz spread values cannot guaranteed to be positive.
目次 Table of Contents
Content
論文審定書...................................................i
摘要...............................................................ii
Abstract.........................................................iii
1. Introduction..............................................1
2. Literature review.......................................6
2.1 Jump test................................................6
2.2 Liquidity measure....................................9
3. Data description........................................11
4. Methodology..............................................16
4.1 Jump test and frequency sampling........16
4.1.1. Lee-Mykland test.................................16
4.1.2. Frequency sampling............................19
4.2 Bid-ask Spread.........................................21
4.3. The connection.......................................23
5. Estimation result........................................24
5.1. Lee-Mykland test.....................................24
5.2. Bid-ask Spread........................................28
5.3 connection...............................................30
6. Conclusion..................................................34
References......................................................38



參考文獻 References
Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56.
Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International economic review, 885-905.
Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The review of economics and statistics, 89(4), 701-720.
Andersen, T. G., Bollerslev, T., & Dobrev, D. (2007). No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and iid noise: Theory and testable distributional implications. Journal of Econometrics, 138(1), 125-180.
Andersen, T. G., Dobrev, D., & Schaumburg, E. (2012). Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics, 169(1), 75-93.
Aït-Sahalia, Y., & Jacod, J. (2004). Fisher's information for discretely sampled Lévy processes. arXiv preprint math/0411438.
Bajgrowicz, P., & Scaillet, O. (2011). We propose a technique to avoid spurious detections of jumps in highfrequency data via an explicit thresholding on available test statistics.
Bandi, F. M., & Russell, J. R. (2008). Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies, 75(2), 339-369.
Barndorff-Nielsen, O. E., & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of financial econometrics, 2(1), 1-37.
Barndorff-Nielsen, O. E., & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of financial econometrics, 4(1), 1-30.
Barndorff‐Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2009). Realized kernels in practice: Trades and quotes. In: Oxford University Press Oxford, UK.
Becker, R., Clements, A. E., & McClelland, A. (2009). The jump component of S&P 500 volatility and the VIX index. Journal of Banking & Finance, 33(6), 1033-1038.
Boudt, K., Cornelissen, J., & Croux, C. (2012). Jump robust daily covariance estimation by disentangling variance and correlation components. Computational Statistics & Data Analysis, 56(11), 2993-3005.
Boudt, K., Croux, C., & Laurent, S. (2011). Robust estimation of intraweek periodicity in volatility and jump detection. Journal of Empirical Finance, 18(2), 353-367.
Boudt, K., & Petitjean, M. (2014). Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks. Journal of Financial Markets, 17, 121-149.
Christensen, K., & Podolskij, M. (2007). Realized range-based estimation of integrated variance. Journal of Econometrics, 141(2), 323-349.
Corwin, S. A., & Schultz, P. (2012). A simple way to estimate bid‐ask spreads from daily high and low prices. The journal of finance, 67(2), 719-760.
Easley, D., & O'Hara, M. (1995). Market microstructure. Handbooks in operations research and management science, 9, 357-383.
Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option prices. The journal of finance, 59(3), 1367-1403.
Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and returns. The journal of finance, 58(3), 1269-1300.
French, K. R., & Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders. Journal of financial economics, 17(1), 5-26.
Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. Journal of business, 67-78.
Giot, P., Laurent, S., & Petitjean, M. (2010). Trading activity, realized volatility and jumps. Journal of Empirical Finance, 17(1), 168-175.
Glosten, L. R., & Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of financial economics, 14(1), 71-100.
Goyenko, R. Y., Holden, C. W., & Trzcinka, C. A. (2009). Do liquidity measures measure liquidity? Journal of financial economics, 92(2), 153-181.
Hansen, P. R., & Lunde, A. (2006). Realized variance and market microstructure noise. Journal of Business & Economic Statistics, 24(2), 127-161.
Harris, L. (1990). Statistical properties of the Roll serial covariance bid/ask spread estimator. The journal of finance, 45(2), 579-590.
Hasbrouck, J. (2009). Trading costs and returns for US equities: Estimating effective costs from daily data. The journal of finance, 64(3), 1445-1477.
Jiang, G. J., Lo, I., & Verdelhan, A. (2011). Information shocks, liquidity shocks, jumps, and price discovery: Evidence from the US Treasury market. Journal of Financial and Quantitative Analysis, 46(2), 527-551.
Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, 1315-1335.
Kyle, D., Ohad, I., & Arntzen, C. (1984). Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proceedings of the National Academy of Sciences, 81(13), 4070-4074.
Lee, S. S., & Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. The Review of Financial Studies, 21(6), 2535-2563.
Lee, S. S., & Wang, M. (2019). The impact of jumps on carry trade returns. Journal of financial economics, 131(2), 433-455.
Lee, S. S., & Wang, M. (2020). Tales of tails: Jumps in currency markets. Journal of Financial Markets, 48, 100497.
Lesmond, D. A., Ogden, J. P., & Trzcinka, C. A. (1999). A new estimate of transaction costs. The Review of Financial Studies, 12(5), 1113-1141.
Lyons, R. K. (2001). The microstructure approach to exchange rates (Vol. 333). Citeseer.
Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of financial economics, 8(4), 323-361.
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of business, 61-65.
Ping-Chen, T. (2021). Modelling Over-Dispersion in Price Jumps Arrivals: A Comparison Between Mixture of Poisson and Linear Hawkes Model. 中國統計學報, 59(2), 98-128.
Roll, R. (1984). A simple implicit measure of the effective bid‐ask spread in an efficient market. The journal of finance, 39(4), 1127-1139.
Sun, B., & Gao, Y. (2020). Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets. Physica A: Statistical Mechanics and Its Applications, 541, 123308.
Tsai, P. C., & Shackleton, M. B. (2016). Detecting jumps in high-frequency prices under stochastic volatility: a review and a data-driven approach. Handbook of high-frequency trading and modeling in finance, 137-181. (Wiley)
Wright, J. H., & Zhou, H. (2009). Bond risk premia and realized jump risk. Journal of Banking & Finance, 33(12), 2333-2345.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-07-26
校外 Off-campus:開放下載的時間 available 2025-07-26

您的 IP(校外) 位址是 3.135.205.26
現在時間是 2024-11-21
論文校外開放下載的時間是 2025-07-26

Your IP address is 3.135.205.26
The current date is 2024-11-21
This thesis will be available to you on 2025-07-26.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code