Responsive image
博碩士論文 etd-0705122-102926 詳細資訊
Title page for etd-0705122-102926
論文名稱
Title
應用水刀科技於橋梁安全之永續管理
Application of Waterjet Technology to Sustainable Bridge Safety Management
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-05-26
繳交日期
Date of Submission
2022-08-05
關鍵字
Keywords
氣候變遷、河川沖刷、橋梁安全、超高壓磨砂水刀、田口實驗、永續管理
climate change, river scouring, bridge safety, ultra-high pressure abrasive waterjet, Taguchi experiment, sustainable management
統計
Statistics
本論文已被瀏覽 171 次,被下載 0
The thesis/dissertation has been browsed 171 times, has been downloaded 0 times.
中文摘要
氣候變遷的災害風險已是一種系統風險,因此聯合國於2015年,提出17項永續發展的核心目標,期許在未來十五年能共同創建一個,永續生產、永續消費和永續使用,各種自然資源的大同世界(United Nations, 2015)。由於科技進步促成經濟的成長,造成全球氣候變遷,暖化、酷熱、水災、旱災、超級颶風、新型或重現的傳染病、農作物驟減和海平面遽升,而水患所帶來的即時性災害特別嚴重,例如2020年1、2月印尼雅加達接連暴雨造成洪水災難、2021年7月中國鄭州持續性強降豪雨,水災患難交通癱瘓數周、2021年8月美國路易斯安那州,遭受颶風艾達的襲擊、2021年8月臺灣因豪雨,造成山區大量土石崩落流入玉穗溪,導高雄市桃源區的明霸克露橋,被土石流沖刷而斷橋。臺灣主要河川有21條水系、次要河川29條水系,普通河川則有81條水系,主要以中央山脈與玉山山脈為分水嶺,使河川形成東西流向,橋梁是連結南北交通主要建設(國家基本資料,1999)。由於台灣地理位置與地形土質氣候關係,每逢颱風或豪雨橋梁陷入沖刷破壞與斷橋,造成南北交通中斷與人民安全的危機。故本研究主要目的在建立橋梁安全永續管理模式,確保用路人永續通行與人身財產安全。
本研究子目的一以文獻回顧法探究國內橋梁沖刷破壞案例,以橋基、橋墩和橋面板三大沖刷破壞類型探討跨河橋梁所面臨的風險與沖刷毀壞機制,例如橋基沖刷破壞的台中后豐大橋,橋墩沖刷破壞的高屏雙園大橋以及橋面板沖毀的明霸克露橋。子目的二以田口實驗設計法進行超高壓磨砂水刀切割實驗以了解各個關鍵因子與超高壓磨砂水刀切割重量損失之關聯性。實驗配置將採用田口實驗直積表,內側以L9的表格配置四個三水準的可控因子(包含噴嘴內徑、水柱壓力、介質出砂孔徑、沖刷時間),外側以L4的表格配置兩個兩水準的不可控因子(包含介質硬度與介質顆粒大小)。基於超高壓磨砂水刀切割原理與橋梁沖刷破壞機制十分相似,子目的三結合上述兩項子目的之研究成果,以逆向推論方式提出橋梁安全永續管理之改善對策,並以永續管理模式評估其優缺點。
研究結果發現(1)橋梁的主要結構如橋面板、橋基與橋墩是橋梁安全管理的主要維謢重點。(2)超高壓磨砂水刀切割實驗結果,得知水柱流量與壓力,介質量、硬度與顆粒大小,為影響切割破壞力的重要關鍵因子,這也呼應了橋梁沖刷破壞力主要源自於急迫的洪水夾帶大量介質(土砂石樹木垃圾)兩大影響因子。(3)洪水期間用何方法可以減少介質對橋梁及河床的沖刷,我們提出橋梁安全永續管理四個改善對策;改善對策一、河道分流:減少洪水雨量與流速以降低對橋梁的衝擊力量,進而增加橋梁壽命;改善對策二、土石回收坑:於土石流源頭或橋梁上游適當位置設置土石回收坑並在洪水期後合法標售資源回收的砂石,促進地方政府收入;改善對策三、合併工法:於土石流源頭可採合併設置土石回收坑與河道分流同時發揮兩個功能;改善對策四、複合工法:依據河川水文資料,可應用土石回收坑與河道分流及依現場地形地物重新評估設計整治河床高程與坡度,使河水能依坡度平順的往下流,不造成阻塞累積河水能量,避免潰堤現象瞬間有更大急迫的沖刷與撞擊。
本研究的意涵:(1)符合政府推動SDGs六大轉型的核心目標。(2)洪水與土石流的沖刷原理有如超高壓磨砂水刀切割原理,「水」可以切割任何物件的概念,激發大家提出更有效的防洪措施。(3)雖然目前有很多很好的防洪措施,如:分洪道、攔河堰----等,但應用在橋梁的防護確有點不足,本文針對橋梁防護,提出四個改善對策,有利於產官學參考與應用。(4)超高壓磨砂水刀切割技術的昇華。
Abstract
Risk events caused by climate change have evolved into a systemic risk. Therefore, the United Nations adopted the 2030 Agenda for Sustainable Development in 2015 and proposed 17 core indicators for global sustainable development. These would create sustainable production, consumption, and facilitate to use natural resources. In the process, vigorous economic activity has caused global warming, increasing air and water pollution, while deforestation and large-scale land degradation have accelerated the rate of species extinction. Climate change caused by human activities has exposed us to many environmental problems, such as extreme heat, floods, droughts, super cyclones, new or re-emerging infectious diseases, crop declines, and sea level rises. Among these, immediate disasters caused by floods are more pronounced. For example, successive torrential rains in Jakarta caused flood disasters in Indonesia in January and February 2020. Continuous heavy rainfall in Zhengzhou, China in July 2021 caused serious casualties. Louisiana in the United States was hit by hurricane Ida in August 2021. On August 2021, Yusui caused by torrential rain A large-scale earth-rock flow collapsed in the creek, causing the bridge deck of the Mingba Kelu Bridge in Taoyuan District, Kaohsiung, Taiwan to be washed away. The most common climate risks in Taiwan are earthquakes, typhoons, extreme high temperatures and landslides. Taiwan has 21 major rivers, 29 minor rivers, and 79 ordinary rivers; dense rivers and rugged terrain make cross-river bridges play an important role in the transportation network. However, various scouring phenomena are common to bridges across the river. In case of typhoon or heavy rain, the bridge will face greater harm. Therefore, the main purpose of this research is to establish a set of sustainable management in line with Taiwan's bridge safety, to ensure the safety of bridge traffic and protect the personal and property safety of passers-by.
The specific objective 1 uses the literature review method to explore the scour damage cases of bridges in Taiwan, and discusses the risks and scour damage mechanisms of cross-river bridges based on the three scour damage types of bridge foundations, bridge pier and bridge decks., Gaoping Shuangyuan Bridge damaged by pier erosion, and Mingba Kelu Bridge damaged by deck erosion. The specific objective 2 uses the Taguchi experimental design method to carry out the scouring experiment of the ultra-high pressure abrasive water jet to understand the relationship between each controllable factor and the cutting efficiency of the ultra-high pressure abrasive water jet. The experimental configuration will use the Taguchi experimental direct product table. The inner side is configured with four three-level controllable factors (including the inner diameter of the water outlet, the waterjet pressure, the medium sand hole diameter, and the scouring time) in the L9 table, and the outer side is configured with the L4 table. Two levels of uncontrollable factors (including media hardness and media particle size).
The principle of ultra-high pressure abrasive waterjet cutting is very similar to the scouring failure mechanism of bridge foundations (piers). In addition, the specific objective 3 propose improvement measures for bridge safety and sustainable management by way of reverse inference, and evaluates its advantages and disadvantages with a sustainable management model.
The research results show that (1) the main structure of the bridge is the bridge deck, the bridge foundation and the bridge pier, which are the main maintenance focus of the bridge safety management. (2) The experimental results show that the waterjet flow and waterjet pressure, the amount of medium, hardness and particle size are important factors affecting scour, which support that the destructive force of bridge scouring mainly comes from the urgent flood that entrains a significant number of media (soil, sand, gravel, trees, waste, etc.). (3) To reduce the scouring of the bridge and the riverbed by the medium during the flood period, we propose the following measures for the bridge safety and sustainable management: (a) Earth-rock recovery pit: Set up a soil-rock recovery pit at the source of the earth-rock flow or upstream of the bridge and set up a recovery pit in the flood. After the period, the recycled sand and gravel will be legally auctioned to promote the income of local governments; (b) River diversion: reduce the flood flow and velocity to reduce the impact force on the bridge, thereby increasing the bridge life; (c) Combined construction method: it can be combined at the source of the earth-rock flow Set up soil and rock recovery pits and river diversion to perform two functions at the same time; (d) Composite construction method: According to the river hydrological data, soil and rock recovery pits and river diversion can be applied, and the elevation and slope of the river bed can be re-evaluated and designed according to the on-site topography and features, so that the river can be the slope flows down smoothly, without causing blockage and accumulating the energy of the river water, and avoiding more urgent scouring and impact in an instant when the embankment breaks.
The implication of this study: (1) It is in line with the core goals of the government to promote the six major transformations of SDGs. (2) The scouring principle of floods and earth-rock flows is similar to the principle of ultra-high pressure frosted water jet cutting. The concept that "water" can cut any object inspires everyone to propose more effective flood control measures. (3) Although there are many good flood control measures at present, such as flood diversion channels, weirs, etc., the protection applied to bridges is indeed insufficient. In this paper, four improvement measures are proposed for bridge protection, which are beneficial to Industry, government and academic reference and application. (4) Sublimation of ultra-high pressure abrasive water jet cutting technology.
目次 Table of Contents
論文審定書………………………………………………………………...…………….i
誌謝……………………………………………………………………..………….……ii
摘要…………………………………………………………………...………………...iii
Abstract ………………………………………………………………….……………..v
目錄…………………………………………………………..…………..……..…......viii
圖次……………………………………...……………………………….…...………....x
表次…………………………………………….………………...……………..…...…xii
第一章 緒論………………………………………………….………………………01
第一節 研究背景與動機……………………………………….………………01
第二節 研究目的……………………………………………….………………03
第三節 研究流程…………………………………………….…………………04
第四節 研究範圍與限制………………………………….……………………05
第二章 文獻探討………………………………………………….…………………07
第一節 永續發展目標…………………………………….……………………07
第二節 臺灣橋梁沖刷現況…………………………….………………………14
第三節 河川沖刷破壞機制…………………………………….………………20
第四節 防洪措施現況………………………………………….………………24
第五節 超高壓磨砂水刀切割原理與應用……………………………….……26
第三章 研究設計………………………………………………….…………………30
第一節 研究結構……………………………………………….………………30
第二節 超高壓磨砂水刀切割與田口實驗設計法……………….……………30
第三節 橋梁安全之永續管理模式……………………………….……………35
第四章 橋梁安全之永續管理………………….……………..…….…………….…38
第一節 橋梁沖刷破壞個案分析………………….……………………………38
第二節 超高壓磨砂水刀切割實驗分析……………….………………………43
第三節橋梁安全永續管理之評估與改善對策………………….……………52
第五章 結論與建議………………………………………………………………….62
第一節 結論……………………………………………………….……………62
第二節 建議………………………………………………………….…………64
第三節 政策與管理意涵…………………………………………….…………65
參考文獻……………………………………………………………………………….68
參考文獻 References
一、中文
水利署規劃試驗所,2015,「SRH數值模式應用於臺灣案例河川之研究」,經濟部。
王傳益、吳益裕、施漢鵬、黃滄隆、鄭人豪、陳浩寧,2007,「梢工沉床護坦工於堤防基礎保護之研究」,水土保持學報,39卷4期,387~400。
交通部運輸研究所,2011,跨河橋梁保護工法之研究,台北:五南。
朱達仁、李宗儒、施君翰,2005,「石門水庫上游集水區防砂壩現況與管理分析」,台灣林業期刊,31卷3期,49~57。
吳宜蓁、李明穎,2017,「公眾框架與科學民主化之實踐:餿水油事件的新聞內容分析」,傳播文化,16期:66~103。
李昊翰,2014,墩前淤積對橋墩穩定性影響之研究,中原大學土木工程研究所碩士論文。
林其穎,2011,橋梁沖刷監測預警系統建置之試驗研究,臺灣大學土木工程學研究所碩士論文。
林高玄,2004,基礎裸露橋梁之耐洪能力評估,國立臺灣大學土木工程學研究所碩士論文。
林詠彬、古孟晃、李柏翰、廖泰杉、吳志泓、陳倫奇,2016,「橋梁沖刷防災雲端監測技術」,科學發展月刊,519期,28~33。
邱郁珺,2021,河川橋梁快速與詳細沖刷深度評估與應用研究,交通大學土木工程系所碩士論文。
范文綱,2009,橋梁基礎局部沖刷監測與安全預警系統,中央大學土木工程研究所碩士論文。
國家發展委員會,2012,「國家氣候變遷調適政策綱領」,國發會。
張世昇,2018,機器學習應用於橋梁沖刷監測系統之研究,國立臺灣大學土木工程學系碩士論文。
郭文達、洪健豪,2015,「礫石河床橋墩沖刷現場觀測與數值模擬」,臺灣水利,63卷1期,71~82。
陳賜賢,2011,「河川橋樑破壞原因探討-以莫拉克颱風雙園大橋為例」,水利會訊,11~28。
葉昭雄,2011,「台13線后豐大橋斷橋原因之探討及相關問題之建議」,臺灣公路工程,37卷11期,2~6。
臺灣氣候變遷推估與資訊平台(TCCIP),2017,臺灣氣候變遷科學報告2017,台北:科技部。
趙益群、李欣輯、劉俊志、陳永明,2015,「以動力降尺度資料應用於高屏溪本流之水理模擬」,臺灣水利,63期3卷,75~84。
鄭勝華、史文生、徐貞美等,2003,台灣地理,台北:地理研究叢書。
鄭富書,1997,「水刀於大地工程應用與展望」,地工技術,63期,77~80。
鄭聰信,2007,橋墩沖刷保護機構之現地實驗與探討,成功大學水利及海洋工程研究所碩士論文。
蕭鈞升,2015,交錯式柱狀保護工對雙橋墩沖刷防護之探討,嘉義大學土木與水資源工程學系碩士論文。
錢寧、張仁、周志德,1987,河床演變學,台北:科學出版社。
二、英文
Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F., & Clopper, P.E. 2012. Evaluating scour at bridges (No. FHWA-HIF-12-003). National Highway Institute (US).
Dargahi, B. 1990. Controlling mechanism of local scouring. Journal of Hydraulic Engineering, 116(10): 1197-1214.
Dey, S. 1999. Time-variation of scour in the vicinity of circular piers. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 136(2): 67-75.
Holling, C.S. 1986. Resilience of ecosystems; local surprise and global change. pp. 292-317 in Sustainable Development of the Biosphere, W.C. Clark and R.E. Munn, editors. Cambridge University Press, Cambridge.
Imperatives, S. 1987. Report of the World Commission on Environment and Development: Our common future. New York: Oxford University Press.
Laursen, E.M. 1962. Scour at bridge crossings. Transactions of the American Society of Civil Engineers, 127(1), 166-180.
Linnerooth-Bayer, L.J., & Amendola, A. 2000. Global change, natural disaster and loss-sharing: Issues of efficiency and equity. The Geneva Papers on Risk and Insurance, 25(2): 203-219.
McKinsey Global Institute, 2020. Climate risk and response in Asia. McKinsey & Company. Retrieval Date: 2020/12/14.
Melville, B.W. 1997. Pier and Abutment Scour: Integrated approach. Journal of Hydraulic Engineering, 123(2): 125-136.
Melville, B.W., & Coleman, S.E. 2000. Bridge Scour. Highlands Ranch, Colorado: Water Resources Publications, LLC.
Melville, B.W., & Raudkivi, A.J. 1977. Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research, 15(4): 373-380.
Parker, G., Toro-Escobar, C., & Voigt, R.L., 1998. Countermeasure sto Protect Bridge Piers from Scour, Transportation Research Board, Anthony Falls Laboratory, University of Minnesota, MN, 360.
Raudkivi, A.J. 1986. Functional trends of scour at bridge piers. Journal of Hydraulic Engineering, 112(1): 1-13.
Taguchi, G. 1987. Systems of Experimental Design. New York: UNIPUB.
TWI2050, 2018. Transformations to achieve the sustainable development goals. Report Prepared by the World in 2050 Initiative. Laxenburg, Austria: IIASA.
UNDESA, 2004. United Nations Department of Economic and Social Affairs 2005. Plan of implementation of the World Summit on sustainable development–Johannesburg plan of implementation.
Walker, B. & Salt, D. 2006. Resilience Thinking: Sustaining Ecosystems and People in a Changing World.Washington, D.C.: Island Press.
World Economic Forum, 2021. The Global Risks Report ,2021. 16th Edition. Geneva: World Economic Forum.
三、網路
ASEA, 1939.「等靜壓技術」,瑞典,百科知識。取自https://www.easyatm.com.tw/wiki/%E7%AD%89%E9%9D%9C%E5%A3%93%E6%8A%80%E8%A1%93。
Carbon Disclosure Project (CDP), 2019. Cities at risk: dealing with the pressures of climate change. https://www.cdp.net/en/research/global-reports/cities-at-risk.。
CSRone, 2018.「2018台灣永續報告現況與趨勢」。取自https://csrone.com/reports/2556。
CWR, 2020. CWR APACCT 20 Index: At-a-glance coastal threat assessments for 20 APAC cities. https://www.chinawaterrisk.org/wp-content/uploads/2020/11/CWR_APACCT_20_Index_CityFactsheets.pdf.。
Eckstein, D., Kunzel, V., & Schafer, L. 2021. Global Climate Risk Index 2021-Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000-2019. Germanwatch. https://germanwatch.org/en/19777. Retrieval Date: 2021/02/06.。
Rockström, J., & Sukhdev, P. 2016.「A new way of viewing the Sustainable Development Goals and how they are all linked to food」, EAT Stockholm Food Forum。取自https://www.stockholmresilience.org/research/research-news/2016-06-14-the-sdgs-wedding-cake.html。
Scott, J. 2010.「企業的可持續發展」,全球聚焦特刊,第04 卷第 02 期。取自https://web.archive.org/web/20110104153508/http://www.jonathantscott.com/The-Sustainable-Business-Mandarin.pdf。
United Nations, 2015. [2030 agenda for sustainable development - THE 17 GOALS]. Department of Economic and Social Affairs. https://sdgs.un.org/goals.。
中天調查報告,2021,「草嶺著名十景!921雲林"飛山"到嘉義」中天新聞。取自https://www.youtube.com/watch?v=qw758mADVY0。
中央氣象局,2018,「臺灣的地震頻率如何?」。取自 https://scweb.cwb.gov.tw/zh-tw/guidance/faqdetail/55。
水土保持局,2022,「為何要設置「防砂壩」」,行政院農業委員會。取自 https://www.swcb.gov.tw/Home/Service/show_detail?id=d4b59015a0cb44fb9750a29802c9efce。
水利規劃試驗所,2011,「大甲溪流域整體治理規劃檢討總報告」。取自https://books.google.com.tw/books?id=VVcBEAAAQBAJ&pg=PR13&lpg=PR13&dq=%E6%96%B7%E6%A9%8B%E6%B5%81%E5%9F%9F%E7%9A%84%E5%88%86%E6%9E%90&source=bl&ots=FKzUbi3oT8&sig=ACfU3U2yvpbB9umjOANvWrADgIBbQnas5Q&hl=zh-TW&sa=X&ved=2ahUKEwilxMnA4c_4AhXYDN4KHW9sBpcQ6AF6BAgQEAM#v=onepage&q=%E6%96%B7%E6%A9%8B%E6%B5%81%E5%9F%9F%E7%9A%84%E5%88%86%E6%9E%90&f=false。
水利規劃試驗所,2022,「河川類-基隆河員山子分洪規劃」。取自 https://www.wrap.gov.tw/News_Content.aspx?n=26405&sms=9823&s=90389。
水博士,2011,「水庫與攔河堰」,經濟部水利署南區水資源局。取自https://www.wrasb.gov.tw/knowing/knowing01_detail.aspx?type=47&tno=12。
交通部,2017,「道路長度及橋梁座數」。取自https://www.motc.gov.tw/ch/home.jsp?id=64&parentpath=0,6。
交通部公路總局,2020,「橋梁長度及座數」,統計查詢網。取自https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=51200。
交通部公路總局,2021,「台20線南橫明霸克露橋因0806水災影響,橋梁遭洪水沖損」。取自https://www.thb.gov.tw/sites/ch/modules/news/news_details??node=eeb33aa6-58a1-4d5d-b6aa-28dd4d5270b0&id=7a47d6cb-ea65-426b-a185-05eabb6101f8。
交通部高速公路局,2020,「橋梁及結構工程設計注意事項」。取自https://www.freeway.gov.tw/Upload/DownloadFiles/%E7%99%BC%E6%96%87%E9%99%84%E4%BB%B62_%E6%A9%8B%E6%A2%81%E8%A8%AD%E8%A8%88%E6%B3%A8%E6%84%8F%E4%BA%8B%E9%A0%85(%E5%88%9D%E7%89%88)%20109.05.04(%E9%A0%92%E5%AE%9A%E7%A8%BF)_250654.pdf。
交通部高速公路總局,2011,「橋基保護工設計規範」。取自https://www.motc.gov.tw/ch/home.jsp?id=740&parentpath=0&mcustomize=divpubreg_view.jsp&dataserno=364&aplistdn=ou=data,ou=divpubreg,ou=ap_root,o=motc,c=tw&toolsflag=Y&imgfolder=img/standard。
自由的百科全書,2022,「永續發展」,維基百科。取自網址https://zh.wikipedia.org/wiki/%E5%8F%AF%E6%8C%81%E7%BB%AD%E5%8F%91%E5%B1%95#.E5.8F.83.E8.80.83.E6.9B.B8.E7.9B.AE。
行政院,2020,「中央管流域整體改善與調適計畫(110-115年)行政院核定版」。https://www-ws.wra.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDAxL3JlbGZpbGUvMC82OTI4LzcwYjU4NzI0LWEzNjEtNDk3NC04YWM3LWNlOGNlZTQxNjQ1Yy5wZGY%3D&n=5Lit5aSu566h5rWB5Z%2Bf5pW06auU5pS55ZaE6IiH6Kq%2F6YGpIOioiOeVqygxMTB%2BMTE1IOW5tCnooYzmlL%2FpmaLmoLjlrprniYgucGRm。
行政院公共工程委員會,2020,「后豐大橋斷橋事件」。取自https://www.pcc.gov.tw/cp.aspx?n=C2BAE3236C8F1705。
行政院交通環境資源處,2019,「台20線南橫公路明霸克露橋搶修歷程」。取自https://www.ey.gov.tw/Page/448DE008087A1971/b79b4c10-8858-4c08-8872-922c3e5b2256。
行政院國家永續發展委員會,2019/09/20,「1080920台灣永續發展目標」,全球資訊網。取自 https://nsdn.epa.gov.tw/taiwan-sdgs/aims。
洪臣宏,2009,「雙園大橋斷橋,勢將重建」,自由時報。取自https://news.ltn.com.tw/news/focus/paper/326088。
高忠人、賴桂文、陳明陀,2019,「橋墩基礎防沖刷常用保護工及案例說明」,水利技師公會。取自http://www.hydraulic.org.tw/new/upfile/file/20190617/20190617172789428942.pdf。
高雄市水利局,2022,「滯洪池效益」。取自https://khnuk.weebly.com/283992794627744316872.html。
國家文化記憶計畫,1999,「二戰後臺灣傷亡損失最慘重 九二一大地震」,事件篇,中央通訊社。取自https://cnaphoto.culture.tw/home/zh-tw/CultureStory_54。
國家文化記憶庫,1996,「賀伯颱風沖毀屏東縣霧台鄉大武村橋樑」,文化部。取自https://memory.culture.tw/Home/Detail?Id=2385537&IndexCode=online_metadata。
國家文化記憶庫,2001,「桃芝颱風」,文化部。取自https://memory.culture.tw/Home/Detail?Id=706870&IndexCode=online_metadata。
國家災害防救科技中心,2009,「莫拉克颱風」。取自https://den.ncdr.nat.gov.tw/1132/1188/1204/2447/2505/。
國家災害防救科技中心,2020,「極端天氣與氣候事件可能造成巨大災害損失」。取自https://dra.ncdr.nat.gov.tw/Frontend/Disaster/ClimateDetail/BAL0000004。
國家災害防救科技中心,2021,「明霸克露橋位置示意圖及受災情形」,2021天然災害紀實。取自https://den.ncdr.nat.gov.tw/media/18478/2021%E5%A4%A9%E7%84%B6%E7%81%BD%E5%AE%B3%E7%B4%80%E5%AF%A6.pdf。
國家基本資料,1999,「國家基本資料_自然環境現況」。取自http://webgis.sinica.edu.tw/epa/nationdata/datas.html。
張志新、何瑞益主編,2022,「2021天然災害紀實」,國家災害防救科技中心。https://den.ncdr.nat.gov.tw/media/18478/2021%E5%A4%A9%E7%84%B6%E7%81%BD%E5%AE%B3%E7%B4%80%E5%AF%A6.pdf。
張明雄、林曜松,1999,「攔沙壩對水生生物多樣性的影響」,林務局。取自https://conservation.forest.gov.tw/0001595。
張國鎮,1999,「九二一集集大地震全面勘災報告-橋樑震害調查」,國家地震工程研究中心。取自https://books.google.com.tw/books/about/%E4%B9%9D%E4%BA%8C%E4%B8%80%E9%9B%86%E9%9B%86%E5%A4%A7%E5%9C%B0%E9%9C%87%E5%85%A8%E9%9D%A2%E5%8B%98%E7%81%BD%E5%A0%B1.html?id=j6T_QwAACAAJ&redir_esc=y。
許俊傑、黃瑞典,2004,「苗栗龜山橋面下陷」,取自 https://mypaper.pchome.com.tw/lainece/post/1240711647。
陳弘逸,2021,「「名霸克露」,遭急流沖斷」橋聯合報。取自https://vip.udn.com/vip/story/121942/5675086。
陳韻如等,2020,「應用統計降尺度日資料於淹水災害風險圖」。取自https://dra.ncdr.nat.gov.tw/Frontend/Education/PublicationDetail?NowMenu=Publication&id=PORT000009。
黃有容,2021,「碧利颱風帶來西南氣流豪大雨」,聯合報。取自https://udn.com/news/story/7266/5661040。
黃佳琳,2008,「甲仙大橋受風災影響斷裂」自由時報。取自https://news.ltn.com.tw/news/focus/paper/243261。
經濟部水利署,2021,「經濟部水利署辦理中央管流域整體改善與調適計畫執行作業要點」。取自https://law.moea.gov.tw/LawContent.aspx?id=GL001189。
經濟部水利署第十河川局,2017,「員山子分洪工程計畫」。取自 https://www.wra10.gov.tw/cp.aspx?n=15377。
福祿遠東公司,2021,「最終極的切割設備」。取自https://www.flowwaterjet.com.tw。
維基百科,2009,「八八水災」。取自https://zh.m.wikipedia.org/zh-tw/%E5%85%AB%E5%85%AB%E6%B0%B4%E7%81%BD。
劉光瑩,2019,「淹水、熱浪、乾旱將成為常態 台灣有哪些城市真的做好準備?」,天下雜誌。取自https://www.cw.com.tw/article/5097593。
蔡世榮,2012,「國道4號神岡高架橋P1~P3橋墩換底工法補強工程(上)」。取自https://www.freeway.gov.tw/Upload/Html/201241753/page04.html。
蔡甫甸,2013,「102年北太平洋西部颱風概述」,中央氣象局。取自https://photino.cwb.gov.tw/rdcweb/lib/cd/cd02tyrp/typ/CWB_web_102/final_102_total_0612_p23.pdf。
蔡益超,1993,「公路橋梁耐震設計規範草案研究」,國家地震工程研究中心。https://www.ncree.narl.org.tw/accomplishment/technicalreports/page/10066。
鄭勝華、徐貞美、史文生等,2001,「台灣地理網站」,國科會專題計畫。取自http://twgeog.ntnugeog.org/static/profile.htm。
聯合報系資料照片,2000,「高屏大橋斷裂扭曲」,聯合報。取自https://theme.udn.com/theme/story/6774/4082480。
聯合報系資料照片,2001,「台中東門橋斷裂」聯合報。取自https://theme.udn.com/theme/story/6774/4082480。
謝鳳秋,2009,「后豐大橋斷橋」,自由時報。取自https://news.ltn.com.tw/news/society/paper/288447。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code