論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2031-08-12
校外 Off-campus:開放下載的時間 available 2031-08-12
論文名稱 Title |
RFM結合顧客忠誠及廣告以獲取穩定利潤 - CLV實證研究 RFM Combined with Customer Loyalty and Advertising to Achieve Stable Profits - CLV Empirical Research |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
94 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-07-06 |
繳交日期 Date of Submission |
2021-08-12 |
關鍵字 Keywords |
顧客終身價值、顧客區隔模型、廣告、顧客忠誠度、顧客維持率 customer lifetime value, customer segmentation model, advertising, customer loyalty, customer retention |
||
統計 Statistics |
本論文已被瀏覽 282 次,被下載 0 次 The thesis/dissertation has been browsed 282 times, has been downloaded 0 times. |
中文摘要 |
競爭激烈商業環境中經營決策越來越重視顧客權益,許多公司都將重點放在顧客維持率即所謂顧客忠誠度和獲利能力的觀念上,以增加產品市場占有率。但在顧客維持率及獲利能力建立成功與否與顧客關係管理有絕對關聯性。在顧客關係管理評價顧客效益,其顧客終身價值是可以衡量顧客增加的購買行為及顧客維持率等相關的消費行為變化,甚至有相關連結。 過去大型百貨零售業所忽略的行銷策略,以目前百貨零售業探討顧客終身價值文獻,並未發現研究深入探討符合零售業顧客終身價值模型、企業利潤及廣告三者重要關係。本研究建立顧客終身價值模型,藉顧客區隔進行分群行銷,並藉由廣告來加乘行銷效果。最後透過廣告加乘效果,促使顧客維持率提升且獲取穩定利潤。 本研究透過X公司資料庫,擷取了15年消費者消費資料,從2006年至2019年的數據進行分析,以顧客終身價值及顧客區格模型來了解顧客行為與公司策略之關連,並進而建立適用於百貨零售業之顧客終身價值模型。實證研究貢獻:1.提供企業建立創新顧客終身價值模型和獲取利潤。2.協助企業建立高端消費群顧客終身價值,帶來穩定利潤。3. 長期性提供策略經理人,主顧客群對品牌性商品消費,增加廣告和利潤呈正相關係。4. 長期性提供策略經理人,主顧客群對品牌性商品消費,當增加廣告無法可以同幅度更增強利潤。 |
Abstract |
Business decision-making in a highly competitive business environment increasingly emphasizes customer rights. Numerous companies focus on customer retention (i.e., customer loyalty) and profitability to increase the market share of their products. However, successful customer retention and profitability is closely related to customer relationship management. By using the customer relationship management to evaluate customer benefits, customer lifetime value can be used to evaluate changes in consumption behaviors, such as increased customer purchase behavior and customer retention or their relationships. Considering marketing strategies previously neglected by large-scale department store retail industry, studies on department store retail industry and customer lifetime value have not profoundly explored the relationship among customer lifetime value model for retail businesses, corporate profits, and advertising. This study established a customer lifetime value model, used customer segmentation for group marketing, and employed advertising to multiply the marketing effects, which ultimately increased customer retention and retained stable profits. This study extracted 15 years of consumer consumption data (2006–2019) from the database of Company X for analysis, after which the models of customer lifetime value and customer segmentation were used to understand the relationship between customer behavior and the company’s strategies, and a customer-lifetime-value model for department store retail industry was established. The contributions of this empirical study include: 1. providing enterprises with an innovative customer-lifetime-value model and helping them obtain profits; 2. assisting enterprises with establishing the lifetime value of high-spending customers and obtaining stable profits; 3. in terms of long-term provision of strategic managers, advertising and profit are positively correlated when the primary customers consume branded products; 4. in terms of long-term provision of strategic managers, the primary customers’ consumption of branded products will not increase profits at the same rate when advertising is increased. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 vii 表目錄 viii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究流程 5 第二章 文獻探討 6 第一節 顧客區隔 6 第二節 顧客終身價值 13 第三節 廣告 22 第四節 研究假設 28 第三章 研究方法 36 第一節 研究架構 36 第二節 研究模型之建構 40 第四章 實證資料分析 52 第一節 實證模型 52 第二節 顧客終身價值與廣告費實證關係 59 第五章 結論與建議 72 第一節 理論與意涵 72 第二節 管理意涵 74 第三節 研究限制與未來研究建議 76 參考文獻 77 |
參考文獻 References |
陳妙玲 & 陳信宏. 2009. 運用顧客終身價值模型及 ARIMA 分析評估顧客價值: 台灣百貨公司個案分析. 中山管理評論, 17(2): 339-365. Abbasimehr, H. & Shabani, M. 2021. A new framework for predicting customer behavior in terms of RFM by considering the temporal aspect based on time series techniques. Journal of ambient intelligence and humanized computing, 12(1): 515-531. Al-dweeri, R. M., Obeidat, Z. M., Al-dwiry, M. A., Alshurideh, M. T., & Alhorani, A. M. 2017. The impact of e-service quality and e-loyalty on online shopping: moderating effect of e-satisfaction and e-trust. International Journal of Marketing Studies, 9(2): 92-103. Albion, M. S. 1983. Advertising's hidden effects: Manufacturers' advertising and retail pricing: Auburn House. Alizadeh Zoeram, A. & Karimi Mazidi, A. R. 2018. New approach for customer clustering by integrating the LRFM model and fuzzy inference system. Iranian Journal of Management Studies, 11(2): 351-378. Aurier, P. & Broz-Giroux, A. 2014. Modeling advertising impact at campaign level: Empirical generalizations relative to long-term advertising profit contribution and its antecedents. Marketing Letters, 25(2): 193-206. Bagwell, K. 2007. The economic analysis of advertising. Handbook of industrial organization, 3: 1701-1844. Baron, R. M. & Kenny, D. A. 1986. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6): 1173. Bauer, D. J., Preacher, K. J., & Gil, K. M. 2006. Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: new procedures and recommendations. Psychological methods, 11(2): 142. Berger, P. D. & Nasr, N. I. 1998. Customer lifetime value: Marketing models and applications. Journal of interactive marketing, 12(1): 17-30. Burelli, P. 2019. Predicting customer lifetime value in free-to-play games. Data Analytics Applications in Gaming and Entertainment: 79-107. Cheng, C.-H. & Chen, Y.-S. 2009. Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3): 4176-4184. Cocieru, O. C., Delia, E. B., & Katz, M. 2019. It’s our club! From supporter psychological ownership to supporter formal ownership. Sport Management Review, 22(3): 322-334. Cui, G., Wong, M. L., & Lui, H.-K. 2006. Machine learning for direct marketing response models: Bayesian networks with evolutionary programming. Management Science, 52(4): 597-612. Cules, E., Agung, A., Kusuma, G. A. T., & Sudia, I. 2018. Retail quality model construction for customer satisfaction and loyalty: A study of retail business in Bali Indonesia. International Journal of Economics, Commerce and Management, 6(9): 29-49. David A. Aaker, Rajeev Batra, & Myers, J. G. 1995. Advertising management,5th ed.: Englewood Cliffs, N.J. : Prentice Hall. Davis, B. C., Hmieleski, K. M., Webb, J. W., & Coombs, J. E. 2017. Funders' positive affective reactions to entrepreneurs' crowdfunding pitches: The influence of perceived product creativity and entrepreneurial passion. Journal of Business Venturing, 32(1): 90-106. De Marco, M., Fantozzi, P., Fornaro, C., Laura, L., & Miloso, A. 2021. Cognitive analytics management of the customer lifetime value: an artificial neural network approach. Journal of Enterprise Information Management. Didem, T. & Jonathan, W. 2013. The Vanishing Middle-Job Polarization and Workers Response to the Decline in Middle-Skill Jobs. FEDERAL RESERVE BANK OF KANSAS CITY: 5-32. Doğan, O., Ayçin, E., & Bulut, Z. A. 2018. Customer segmentation by using RFM model and clustering methods: a case study in retail industry. International Journal of Contemporary Economics and Administrative Sciences, 8(1): 1-19. Don, P. & Martha, R. 2005. Return on Customer: New York: Random House, Inc. Dwyer, F. R. 1997. Customer lifetime valuation to support marketing decision making. Journal of Direct Marketing, 11(4): 6-13. Etzion, O., Fisher, A., & Wasserkrug, S. 2005. E-CLV: A modeling approach for customer lifetime evaluation in e-commerce domains, with an application and case study for online auction. Information Systems Frontiers, 7(4-5): 421-434. Gupta, S., Lehmann, D. R., & Stuart, J. A. 2004. Valuing customers. Journal of marketing research, 41(1): 7-18. Gupta, S. & Kumar, V. 2013. Sustainability as corporate culture of a brand for superior performance. Journal of World Business, 48(3): 311-320. Hair Jr, J. F., Babin, B. J., & Krey, N. 2017. Covariance-based structural equation modeling in the Journal of Advertising: Review and recommendations. Journal of Advertising, 46(1): 163-177. Harmeling, C. M., Moffett, J. W., & Arnold, M. J. 2017a. Toward a theory of customer engagement marketing. Journal of the Academy of marketing science, 45(3): 312-335. Harmeling, C. M., Moffett, J. W., Arnold, M. J., & Carlson, B. D. 2017b. Toward a theory of customer engagement marketing. Journal of the Academy of marketing science, 45(3): 312-335. Hayes, A. F. 2017. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach: Guilford publications. Hsu, L., Zhang, J. J., & Lawrence, B. 2020. The Moderating Role of Hotel Type on Advertising Expenditure Returns in Franchised Chains. Journal of Advertising, 49(5): 575-591. Hughes, A. M. 1994a. Strategic database marketing. 1994: Probus Publishing Company, Chicago. Hughes, A. M. 1994b. Strategic database marketing: the masterplan for starting and managing a profitable. Customer-based Marketing Program, Irwin Professional. Hughes, A. M. 2000. Strategic database marketing: the masterplan for starting and managing a profitable, customer-based marketing program: McGraw-Hill New York, NY. Hughes, A. M. 2005. Strategic Database Marketing: McGraw-Hill Pub. Co. Jain, D. & Singh, S. S. 2002. Customer lifetime value research in marketing: A review and future directions. Journal of interactive marketing, 16(2): 34. Jhaveri, D., Chaudhari, A., & Kurup, L. 2011. Twitter sentiment analysis on e-commerce websites in India. International Journal of Computer Applications, 127(18): 14-18. Kandampully, J., Zhang, T. C., & Bilgihan, A. 2015. Customer loyalty: a review and future directions with a special focus on the hospitality industry. International Journal of Contemporary Hospitality Management. Kaul, D. 2017. Customer relationship management (CRM), customer satisfaction and customer lifetime value in retail. Review of professional management, 15(2): 55-60. Kaul, S. 2009. Consumer Behaviour and Marketing Action. Vikalpa: The Journal for Decision Makers, 34(2): 130-131. Khodabandehlou, S. 2019. Designing an e-commerce recommender system based on collaborative filtering using a data mining approach. International Journal of Business Information Systems, 31(4): 455-478. Kotler, P. A. 2018. Principle of Marketing: Pearson Education. Kueng, L. 2018. Excess sensitivity of high-income consumers. The Quarterly Journal of Economics, 133(4): 1693-1751. Kumar, V., Petersen, J. A., & Leone, R. P. 2007. How valuable is word of mouth? Harvard business review, 85(10): 139. Kumar, V. 2013. Profitable customer engagement: Concept, metrics and strategies: SAGE Publications India. Kumar, V. & Pansari, A. 2016. National culture, economy, and customer lifetime value: Assessing the relative impact of the drivers of customer lifetime value for a global retailer. Journal of International Marketing, 24(1): 1-21. Kumar, V. & Reinartz, W. 2016. Creating enduring customer value. Journal of marketing, 80(6): 36-68. Kumar, V. 2018. A theory of customer valuation: Concepts, metrics, strategy, and implementation. Journal of Marketing, 82(1): 1-19. Kumar, V., Rajan, B., Gupta, S., & Dalla Pozza, I. 2019. Customer engagement in service. Journal of the Academy of Marketing Science, 47(1): 138-160. Lemmens, A. & Gupta, S. 2020. Managing churn to maximize profits. Marketing Science, Forthcoming. Lemon, K. N. & Verhoef, P. C. 2016. Understanding customer experience throughout the customer journey. Journal of marketing, 80(6): 69-96. Li, X. & Li, D. 2019. An improved collaborative filtering recommendation algorithm and recommendation strategy. Mobile Information Systems, 2019. MacKinnon, D. P., Lockwood, C. M., & Williams, J. 2004. Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate behavioral research, 39(1): 99-128. Maity, M. & Gupta, S. 2016. Mediating effect of loyalty program membership on the relationship between advertising effectiveness and brand loyalty. Journal of Marketing Theory and Practice, 24(4): 462-481. Mohammadian, M. & Makhani, I. 2019. RFM-Based customer segmentation as an elaborative analytical tool for enriching the creation of sales and trade marketing strategies. International academic journal of accounting and financial management, 6(01): 102-116. Mothersbaugh, D. L., Hawkin, D. I., & Kleiser, S. B. 2019. Consumer behavior: Building marketing strategy,14th ed.: McGraw-Hill Higher Education. Muller, D., Judd, C. M., & Yzerbyt, V. Y. 2005. When moderation is mediated and mediation is moderated. Journal of personality and social psychology, 89(6): 852. Nemati, Y., Mohaghar, A., Alavidoost, M. H., & Babazadeh, H. 2018. A CLV-based framework to prioritize promotion marketing strategies: a case study of telecom industry. Iranian Journal of Management Studies, 11(3): 437-462. O'guinn, T., Allen, C., Semenik, R. J., & Scheinbaum, A. C. 2018. Advertising and integrated brand promotion,8e: Nelson Education. O'keefe, D. J. 2015. Persuasion: Theory and research: Sage Publications. Oskarsdottir, M., Baesens, B., & Vanthienen, J. 2018. Profit-Based Model Selection for Customer Retention Using Individual Customer Lifetime Values. Big Data, 6(1): 53-65. Ougiaroglou, S., Diamantaras, K. I., & Evangelidis, G. 2018. Exploring the effect of data reduction on Neural Network and Support Vector Machine classification. Neurocomputing, 280: 101-110. Palmatier, R. W., Kumar, V., & Harmeling, C. M. 2017. Customer engagement marketing: Springer. Park, E., Kim, K. J., & Kwon, S. J. 2017. Corporate social responsibility as a determinant of consumer loyalty: An examination of ethical standard, satisfaction, and trust. Journal of Business Research, 76: 8-13. Petersen, J. A., Kumar, V., Polo, Y., & Sese, F. J. 2018. Unlocking the power of marketing: understanding the links between customer mindset metrics, behavior, and profitability. Journal of the Academy of Marketing Science, 46(5): 813-836. Qin, R., Yuan, Y., & Wang, F.-Y. 2017. Exploring the optimal granularity for market segmentation in RTB advertising via computational experiment approach. Electronic Commerce Research and Applications, 24: 68-83. Qureshi, M. I. 2018. Relationship between advertising expenditures and earnings of the UK firms. Accounting & Management Information Systems / Contabilitate si Informatica de Gestiune, 17(4): 591-604. Rasouli, H., Shirazian, Z., & Rasuli, H. 2021. Study the effect of advertising effectiveness on the CRM and loyalty with the mediating role of providing the quality of services. Revista Gestão & Tecnologia, 21(1): 47-72. Rhee, E. S. & Jung, W. S. 2019. Brand familiarity as a moderating factor in the ad and brand attitude relationship and advertising appeals. Journal of Marketing Communications, 25(6): 571-585. Russell, G. J. & Kamakura, W. A. 1994. Understanding brand competition using micro and macro scanner data. Journal of Marketing Research, 31(2): 289-303. Sarvari, P. A., Ustundag, A., & Takci, H. 2016. Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes. Schlegelmilch, B. B. & Winer, R. S. 2020. The Routledge Companion to Strategic Marketing: Routledge. Septianto, F., Seo, Y., & Zhao, F. 2021. The Effects of Competence and Warmth Appeals on Luxury and Sustainable Brand Advertising: The Moderating Role of Construal Level. Journal of Advertising: 1-16. Shilbury, D., Quick, S., Funk, D., Westerbeek, H., & Karg, A. 2020. Strategic sport marketing: Routledge. Solem, B. A. A. 2016. Influences of customer participation and customer brand engagement on brand loyalty. Journal of Consumer Marketing. Swaminathan, V. 2016. Branding in the digital era: new directions for research on customer-based brand equity. AMS review, 6(1-2): 33-38. Tüzemen & Didem. 2018. Why are prime-age men vanishing from the labor force? Economic Review-Federal Reserve Bank of Kansas City, 103(1): 5-30. Taillard, J. B. a. M. 2013. A NEW FRAMEWORK FOR CUSTOMER SEGMENTATION. Harvard Business Review. Tsao, Y.-C., Raj, P. V. R. P., & Yu, V. 2019. Product substitution in different weights and brands considering customer segmentation and panic buying behavior. Industrial Marketing Management, 77: 209-220. Venkatesan, R. & Kumar, V. 2004. A customer lifetime value framework for customer selection and resource allocation strategy. Journal of marketing, 68(4): 106-125. Venkatesan, R., Bleier, A., Reinartz, W., & Ravishanker, N. 2019. Improving customer profit predictions with customer mindset metrics through multiple overimputation. Journal of the Academy of Marketing Science, 47(5): 771-794. Vera, J. & Trujillo, A. 2017. Searching most influential variables to brand loyalty measurements: An exploratory study. Contaduría y administración, 62(2): 600-624. Voleti, S., Gangwar, M., & Kopalle, P. K. 2017. Why the dynamics of competition matter for category profitability. Journal of Marketing, 81(1): 1-16. Wei, J.-T., Lin, S.-Y., Weng, C.-C., & Wu, H.-H. 2012. A case study of applying LRFM model in market segmentation of a children’s dental clinic. Expert Systems with Applications, 39(5): 5529-5533. Wilmers, N. 2017. Does Consumer Demand Reproduce Inequality? High-Income Consumers, Vertical Differentiation, and the Wage Structure. American Journal of Sociology, 123(1): 178-231. Wu, S.-Y., Lin, S., Chen, G.-R., Hsu, K.-C., & Heish, L.-Y. 2019. Advertising Information, Advertising Precision and Resale Price Maintenance. The Journal of Applied Business and Economics, 21(2): 165-173. Yeh, I.-C., Yang, K.-J., & Ting, T.-M. 2009. Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications, 36(3): 5866-5871. Zhang, Y., Bradlow, E. T., & Small, D. S. 2015. Predicting customer value using clumpiness: From RFM to RFMC. Marketing Science, 34(2): 195-208. Zhao, X., Lynch Jr, J. G., & Chen, Q. 2010. Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of consumer research, 37(2): 197-206. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2031-08-12 校外 Off-campus:開放下載的時間 available 2031-08-12 您的 IP(校外) 位址是 3.144.43.194 現在時間是 2024-11-21 論文校外開放下載的時間是 2031-08-12 Your IP address is 3.144.43.194 The current date is 2024-11-21 This thesis will be available to you on 2031-08-12. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-12 |
QR Code |