論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
基於卷積類神經網路的房屋價值估值分析-以高雄市街景影像為例 Housing Price Evaluation based on Convolutional Neural Networks—A Case Study of Street View Image Analysis for Kaohsiung City. |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
40 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-07-02 |
繳交日期 Date of Submission |
2021-08-16 |
關鍵字 Keywords |
房屋估價、卷積類神經網路、圖像特徵提取、自動編碼器、LightGBM、Grad-CAM Housing Price, Convolutional Neural Networks, Image feature extraction, AutoEncoder, LightGBM, Grad-CAM |
||
統計 Statistics |
本論文已被瀏覽 561 次,被下載 93 次 The thesis/dissertation has been browsed 561 times, has been downloaded 93 times. |
中文摘要 |
深度學習卷積類神經網路(Convolutional Neural Networks ,CNN)可有效提取影像特徵,自監督式學習自動編碼器(AutoEncoder ,AE)可將資訊壓縮成較低維度具代表性的資料,輕量梯度提升機器(Light Gradient Boosting Machine, LightGBM)是一種基於決策樹boosting的機器學習演算法,可快速建立可解釋性的模型及利用梯度權重分類激勵映射(Gradient-weighted Class Activation Mapping, Grad-CAM) 可對基於CNN的模型產生的決策生成,以視覺方式解釋關注的位置及區域。 本研究提出利用機器學習及深度學習等相關技術,建構一個房屋估價模型,用以協助民眾、相關地政機關及不動產服務業者評估房屋正常合理的價格,透過CNN、AE、LightGBM、Grad-CAM等方法進行房屋估價建模的研究,並包含房屋實價登錄及建物街景影像資料的抓取及預處理、轉換特徵及圖像自動視覺化解釋等一併探討,以達本研究目標。 |
Abstract |
Deep learning convolutional neural networks (Convolutional Neural Networks, CNN) can effectively extract image features, self-supervised learning autoencoder (AutoEncoder, AE) can compress information into lower-dimensional representative data, LightGBM (Light Gradient Boosting Machine) is a machine learning algorithm based on decision tree boosting, which can quickly build interpretable models and use Grad-weighted Class Activation Mapping (Grad-CAM) to generate decisions based on CNN-based models and interpret them visually The location and area of interest. This paper proposes the use of machine learning and deep learning and other related technologies to construct a house valuation model to assist the public, relevant land administration agencies, and real estate service providers to evaluate the normal and reasonable price of houses through CNN, AE, LightGBM, Grad-CAM and other methods are used to conduct research on building valuation modeling, including real-price registration of houses, capture and preprocessing of building street view image data, conversion features and automatic image interpretation, etc., in order to achieve the goal of this research . |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 圖次 vi 表次 vii 第一章、 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 2 第二章、 文獻探討 3 第一節 實價登錄 3 第二節 影響房價重要變數 4 第三節 深度學習 5 第四節 自動編碼器 7 第五節 LightGBM框架 8 第六節 Grad-CAM方法 9 第三章、 研究方法與步驟 11 第一節 研究架構 11 第二節 研究方法 12 第三節 提取建物暨周遭街景影像特徵 14 第四節 實價登錄資料之移轉層次資料降維處理 15 第五節 塑建房價預測模型 16 第六節 評估建物暨周遭街景影像模型 18 第七節 建模成果評估標準 18 第四章、 實驗結果與討論分析 19 第一節 研究資料 19 第二節 CNN特徵擷取結果 21 第三節 AE降維結果 22 第四節 建模結果及比較分析 23 第五節 建物街景影像特徵視覺化分析結果 25 第六節 研究限制 27 第五章、 研究結論與建議 28 第六章、 參考文獻 29 |
參考文獻 References |
Ahmed, E., & Moustafa, M. (2016). House price estimation from visual and textual features. ArXiv:1609.08399 [Cs]. http://arxiv.org/abs/1609.08399 Law, S., Paige, B., & Russell, C. (2019). Take a Look Around: Using Street View and Satellite Images to Estimate House Prices. ACM Transactions on Intelligent Systems and Technology, 10(5), 1–19. https://doi.org/10.1145/3342240 Li, Y., Chen, Y., Rajabifard, A., Khoshelham, K., & Aleksandrov, M. (2018). Estimating Building Age from Google Street View Images Using Deep Learning (Short Paper). In S. Winter, A. Griffin, & M. Sester (Eds.), 10th International Conference on Geographic Information Science (GIScience 2018) (Vol. 114, p. 40:1-40:7). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.40 LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9, p9420. https://doi.org/10.29322/IJSRP.9.10.2019.p9420 Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv:1409.1556 [Cs]. http://arxiv.org/abs/1409.1556 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848 He, K., Girshick, R., & Dollár, P. (2018). Rethinking ImageNet Pre-training. ArXiv:1811.08883 [Cs]. http://arxiv.org/abs/1811.08883 Yin, X., Chen, W., Wu, X., & Yue, H. (2017). Fine-tuning and visualization of convolutional neural networks. 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1310–1315. https://doi.org/10.1109/ICIEA.2017.8283041 Bank, D., Koenigstein, N., & Giryes, R. (2021). Autoencoders. ArXiv:2003.05991 [Cs, Stat]. http://arxiv.org/abs/2003.05991 Alain, G., & Bengio, Y. (2014). What regularized auto-encoders learn from the data-generating distribution. The Journal of Machine Learning Research, 15(1), 3563-3593. Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189–1232. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017, January 1). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. NIPS. https://openreview.net/forum?id=H14wuu-dbH Zeiler, M. D., & Fergus, R. (2013). Visualizing and Understanding Convolutional Networks. ArXiv:1311.2901 [Cs]. http://arxiv.org/abs/1311.2901 Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400 [Cs]. http://arxiv.org/abs/1312.4400 Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015). Learning Deep Features for Discriminative Localization. ArXiv:1512.04150 [Cs]. http://arxiv.org/abs/1512.04150 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7 Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150–1157 vol.2. https://doi.org/10.1109/ICCV.1999.790410 Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer Vision – ECCV 2006 (pp. 404–417). Springer. https://doi.org/10.1007/11744023_32 Kestens, Y., Thériault, M., & Des Rosiers, F. (2004). The Impact of Surrounding Land Use and Vegetation on Single-Family House Prices. Environment and Planning B: Planning and Design, 31(4), 539–567. https://doi.org/10.1068/b3023 林祖嘉, & 黃麗蓉. (2014). 嫌惡性風水對商用不動產價格影響之研究. 住宅學報,23(1), 51-72. 鄭偉安. (2016). 都市公園綠地對於房價之影響 以高雄市區為例. 國立中山大學,高雄市. Retrieved from https://hdl.handle.net/11296/an4mtx 閻俞蓉. (2021). 基於多模態學習的房產鑑價模型 ──以高雄市為例. 國立中山大學,高雄市. Retrieved from https://etd.lis.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0202121-134610 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |