Responsive image
博碩士論文 etd-0720122-010223 詳細資訊
Title page for etd-0720122-010223
論文名稱
Title
鄰里屬性如何影響車站級別的客流量-以高雄捷運為例
How neighborhood attributes influence station-level ridership : An analysis of the Kaohsiung Metro
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-18
繳交日期
Date of Submission
2022-08-20
關鍵字
Keywords
捷运、乘车人、密度、以公交为导向的发展、土地利用
Transit-oriented development, Kaohsiung, Taiwan, metro, rail-based transit, ridership, density, diversity, land-use, design, destination, transit, built-environment
統計
Statistics
本論文已被瀏覽 238 次,被下載 50
The thesis/dissertation has been browsed 238 times, has been downloaded 50 times.
中文摘要
擁有廣泛公共交通系統的人口稠密的大城市往往在軌道交通乘客中佔有更大比例的情形。儘管這些城市的地鐵系統通常比其他地區擁有更多的客流量,有一些交通網絡在同一城市的不同地區仍擁有極大的變異性。本研究利用大眾運輸導向型發展 (TOD) 的“5Ds 模型” 來分析鄰近地區人口與城市規劃相關特徵對該地區特定車站乘客量的影響。以車站中心外推半徑600公尺的行人聚集區 (PCA),稱為“鄰近地區”,是測量建築環境變化性時應用的標準。台灣高雄都會區分為三個同心環,捷運站根據其相對於市中心的距離進行相應分配。與設計相關的變量,特別是十字路口的數量、人行道總面積和共享單車停靠點的數量,皆為預測高雄捷運各站乘客量的有力指標。交通距離,有時被稱為多式聯運,被認為是高雄市中心和周邊地區乘客量的決定性因素。土地利用多樣性,也稱為土地利用混合/熵,對於城市的中部和外圍地區很重要。車站的可達性在中心和外環很重要,而住宅密度僅在高雄外環地區具有重要性。規劃的特徵取決於它們與市中心的相對位置。該研究最後根據研究結果為城市規劃者提供了寶貴的見解。最後,建議在進一步研究中增加其他變.
Abstract
Large densely populated cities with comprehensive public transportation systems tend to have a greater modal share of rail-based transit ridership. Even though the metro systems of these cities often possess more ridership than other areas, some transit networks experience great variability in different parts of the same city. This study analyzes the effects of neighborhood characteristics on station specific ridership by using the “5Ds model” of transit-oriented development (TOD). A pedestrian catchment area (PCA) of 600 m from a station’s center, referred to as a ‘neighborhood’, is the specification applied when measuring variables of the built environment. The metropolitan area of Kaohsiung, Taiwan is split into three concentric rings, and metro stations are assigned accordingly based on their distance relative to the city center. Design related variables, specifically the number of intersections, total sidewalk area, and number of bikeshare stops are especially strong predictors of station-level ridership for the Kaohsiung metro. Distance to transit, sometimes referred to as inter-modal connectivity, is observed to be a determinant factor of ridership in the city center and periphery of Kaohsiung. Land use diversity, also referred to as land-use mixture/entropy, is important in the intermediate and peripheral parts of the city. The accessibility of a station is important in the center and peripheral rings, while residential density is only significant in the peripheral ring of Kaohsiung. The features of the built environment depend on their relative location to the city center. The study concludes by offering valuable insights to urban planners based on the findings. Finally, additional variables are suggested for implementation in further studies.
目次 Table of Contents
Table of Contents
Thesis Validation Letter .......................................................................i
Acknowledgments ..............................................................................ii
Chinese Abstract ................................................................................iii
English Abstract ............................................................................... iv
Table of Contents ...............................................................................v
List of Figures and Tables ....................................................................vi
List of Abbreviations ......................................................................... vii
Chapter 1: Introduction ...................................................................1
Chapter 2: Theoretical Framework ......................................................6
2.1 : Isolated state model ............................................................7
2.2 : Monocentric model .............................................................8
2.3 : 3Ds and 5Ds of TOD ...........................................................9
Chapter 3: Literature Review ........................................................ ...13
3.1 : TOD Typologies................................................................13
3.2 : Selection of Variables ..........................................................16
3.3 : Dependent Variables ...................................................................17
Chapter 4: Methodology and Hypotheses .............................................27
4.1 : Hypotheses statements .........................................................29
4.2 : Variable Selection ..............................................................30
Chapter 5: Study Area ....................................................................36
Chapter 6: Results ........................................................................ 48
Chapter 7: Conclusions ...................................................................56
Chapter 8: Limitations and Implications................................................60
References ..................................................................................65
Appendixes .................................................................................69
List of Figures
Figure 1-1: HSR Annual Ridership from 2007-2019.............................................4
Figure 2-1: von Thünen’s “isolated state model” ................................................ 7
Figure 2-2 : Alonso’s “monocentric model” ...................................................... 8
Figure 2-3 : Robert Cervero’s “3Ds” and “5Ds” of TOD ....................................... 9
Figure 5-1 : Kaohsiung Transportation Systems (ArcGIS) .................................... 37
Figure 5-2 : Kaohsiung Mass Rapid Transit Map (MRT, TRA, and LRT stations)......... 38
Figure 5-3 : Proposed Yellow Line Project ....................................................... 40
Figure 5-4 : Descriptive statistics of the entropy measurement for Kaohsiung .............. 42
Figure 5-5: Annual ridership figures for Kaohsiung MRT network ...........................43
Figure 5-6 : Annual ridership for the Kaohsiung, Taipei, and Taoyuan MRT ............... 44
Figure 5-7 : Kaohsiung and Taipei MRT Maps ...................................................45
Figure 6-1 : Regression analysis results for Center, Intermediate, and Peripheral Ring.....51
Figure 6-2 : Descriptive statistics for the significant variables in the center ring ............52
Figure 6-3 : Descriptive statistics for the significant variables in the intermediate ring.....52
Figure 6-4 : Descriptive statistics for the significant variables in the peripheral ring .......53
List of Tables
Table 4-1: Public Attraction(s) of MRT stations .................................................33
Table 8-1 : Collinearity Heatmap for Variables ...........................................61
參考文獻 References
Andersson, D. E., Shyr, O. F., & Yang, J. (2021). Neighbourhood effects on station-level transit use: Evidence from the Taipei Metro. Journal of Transport Geography, 94, 103127. https://doi.org/10.1016/j.jtrangeo.2021.103127
Boarnet, M., & Crane, R. C. (2001). The demand for Travel. Travel by Design. https://doi.org/10.1093/oso/9780195123951.003.0009
Belzer, D., Srivastava, S., Greenberg, E., & Wood, J. (n.d.).
Transit-oriented development (TOD) and employment - reconnecting america. Center for Transit-oriented development . Retrieved July 7, 2022, from http://reconnectingamerica.org/assets/Uploads/TODandEmploymentFINALMay2011.pdf
Cabinet approves new MRT Line for Kaohsiung. Taipei Times. (2022, March 20). Retrieved August 9, 2022, from https://www.taipeitimes.com/News/taiwan/archives/2022/03/21/2003775166
Cervero, R., & Kockelman, K. (1997). Travel demand and the 3DS: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199–219. https://doi.org/10.1016/s1361-9209(97)00009-6
Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009). Influences of built environments on walking and cycling: Lessons from Bogotá. International Journal of Sustainable Transportation, 3(4), 203–226. https://doi.org/10.1080/15568310802178314
Cervero, R. (2001). Walk-and-ride: Factors influencing pedestrian access to transit. Journal of Public Transportation, 3(4), 1–23. https://doi.org/10.5038/2375-0901.3.4.1
Chakraborty, A., & Mishra, S. (2013). Land use and transit ridership connections: Implications for state-level planning agencies. Land Use Policy, 30(1), 458–469. https://doi.org/10.1016/j.landusepol.2012.04.017
Choi, J., Lee, Y. J., Kim, T., & Sohn, K. (2011). An analysis of metro ridership at the station-to-station level in Seoul. Transportation, 39(3), 705–722. https://doi.org/10.1007/s11116-011-9368-3
Climate - taiwan. Taiwan climate: average weather, temperature, precipitation, when to go. (n.d.). Retrieved July 8, 2022, from https://www.climatestotravel.com/climate/taiwan
Corporation, K. R. T. (n.d.). Kaohsiung Metro. KRTC. Retrieved July 8, 2022, from https://www.krtc.com.tw/eng/
Encyclopædia Britannica, inc. (n.d.). Location theory. Encyclopædia Britannica. Retrieved July 8, 2022, from https://www.britannica.com/topic/location-theory#ref137336
Environmental Protection Agency. (n.d.). Smart Growth and Transportation. EPA. Retrieved August 9, 2022, from https://www.epa.gov/smartgrowth/smart-growth-and-transportation
Freddie Mac, & Khater, S. (2019, October 2). Freddie Mac Insight: The effect of proximity to Metro stations on local home prices. GlobeNewswire News Room. Retrieved August 9, 2022, from https://www.globenewswire.com/news-release/2019/10/02/1924241/0/en/Freddie-Mac-Insight-The-Effect-of-Proximity-to-Metro-Stations-on-Local-Home-Prices.html
Glaeser, E., & Kahn, M. (2008). The greenness of cities: Carbon dioxide emissions and urban development. https://doi.org/10.3386/w14238
Groffman, P., & Kennedy, C. (2009). Faculty opinions recommendation of greenhouse gas emissions from global cities. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1281972.748076
Handy, S. L., Boarnet, M. G., Ewing, R., & Killingsworth, R. E. (2002). How the built environment affects physical activity. American Journal of Preventive Medicine, 23(2), 64–73. https://doi.org/10.1016/s0749-3797(02)00475-0
Handy, S. (1996). Methodologies for exploring the link between urban form and travel behavior. Transportation Research Part D: Transport and Environment, 1(2), 151–165. https://doi.org/10.1016/s1361-9209(96)00010-7
He, Y., Zhao, Y., & Tsui, K. L. (2018). An analysis of factors influencing metro station ridership: Insights from Taipei Metro. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). https://doi.org/10.1109/itsc.2018.8569948
Hoornweg, D., Sugar, L., & Trejos Gómez, C. L. (2011). Cities and greenhouse gas emissions: Moving forward. Environment and Urbanization, 23(1), 207–227. https://doi.org/10.1177/0956247810392270
Hsu, C. (2021, December 20). NDC approves Kaohsiung Yellow Line. Taipei Times. Retrieved August 9, 2022, from https://www.taipeitimes.com/News/biz/archives/2021/12/21/2003769917#:~:text=Construction%20of%20a%20new%20line,by%20the%20end%20of%202028
Kuby, M., Barranda, A., & Upchurch, C. (2004). Factors influencing light-rail station boardings in the United States. Transportation Research Part A: Policy and Practice, 38(3), 223–247. https://doi.org/10.1016/j.tra.2003.10.006
Lin, J.-J., & Shin, T.-Y. (2008). Does transit-oriented development affect metro ridership? Transportation Research Record: Journal of the Transportation Research Board, 2063(1), 149–158. https://doi.org/10.3141/2063-18
Liu, C., Erdogan, S., Ma, T., & Ducca, F. W. (2016). How to increase rail ridership in Maryland: Direct ridership models for policy guidance. Journal of Urban Planning and Development, 142(4). https://doi.org/10.1061/(asce)up.1943-5444.0000340
Loo, B. P. Y., Chen, C., & Chan, E. T. H. (2010). Rail-based transit-oriented development: Lessons from New York City and Hong Kong. Landscape and Urban Planning, 97(3), 202–212. https://doi.org/10.1016/j.landurbplan.2010.06.002
McNally, M. G. (2008, November 17). The Four step model. eScholarship, University of California. Retrieved July 8, 2022, from https://escholarship.org/uc/item/0r75311t
Metro of Kaohsiung. MRT: Kaohsiung metro map, Taiwan. (n.d.). Retrieved July 8, 2022, from https://mapa-metro.com/en/taiwan/kaohsiung/kaohsiung-mrt-map.htm
Nasri, A., & Zhang, L. (2014). The analysis of transit-oriented development (TOD) in Washington, D.C. and Baltimore metropolitan areas. Transport Policy, 32, 172–179. https://doi.org/10.1016/j.tranpol.2013.12.009
Olden, K., Frumpkin, H., & Jackson, R. (2005). Urban sprawl and public health: Designing, planning, and building for Healthy Communities. Environmental Health Perspectives, 113(3). https://doi.org/10.1289/ehp.113-a202a
Pan, H., Li, J., Shen, Q., & Shi, C. (2017). What determines rail transit passenger volume? implications for transit oriented development planning. Transportation Research Part D: Transport and Environment, 57, 52–63. https://doi.org/10.1016/j.trd.2017.09.016
Qiang, D., Zhang, L., & Huang, X. (2022). Quantitative evaluation of tod performance based on multi-source data: A case study of shanghai. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.820694
Ratner, K. A., & Goetz, A. R. (2013). The reshaping of land use and urban form in Denver through transit-oriented development. Cities, 30, 31–46. https://doi.org/10.1016/j.cities.2012.08.007
Robert Cervero , Olga L. Sarmiento , Enrique Jacoby , Luis Fernando Gomez & Andrea Neiman (2009) Influences of Built Environments on Walking and Cycling: Lessons from Bogotá, International Journal of Sustainable Transportation, 3:4, 203-226, DOI: 10.1080/15568310802178314
Shyr, O. F., Andersson, D. E., Cheng, Y.-H., & Hsiao, Y.-H. (2017). What explains rapid transit use? evidence from 97 urbanized areas. Transportation Research Part A: Policy and Practice, 100, 162–169. https://doi.org/10.1016/j.tra.2017.04.019
STPI. (n.d.). Retrieved July 8, 2022, from https://www.stpi.narl.org.tw/public/en/show?id=4b11416476f9e9ca017780c482c25b37
Strong, M. (2022, April 30). Construction of TSMC chip fab in Taiwan's Kaohsiung to start in June: Taiwan News: 2022-04-30 16:08:00. Taiwan News. Retrieved July 8, 2022, from https://www.taiwannews.com.tw/en/news/4524146
Taipei City Government. (n.d.). What percentage of the population travels by public transportation every day in Taipei? what are the future targets? (planning). \. Retrieved July 8, 2022, from https://english.gov.taipei/News_Content.aspx?n=ADAE9018C6CFA1FE&s=E62708BF6A355A23
Widyahari, N. L., & Indradjati, P. N. (2015). The potential of transit-oriented development (TOD) and its opportunity in Bandung Metropolitan Area. Procedia Environmental Sciences, 28, 474–482. https://doi.org/10.1016/j.proenv.2015.07.057
Wikimedia Foundation. (2022, June 24). List of United States cities by population. Wikipedia. Retrieved July 8, 2022, from https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
Wikimedia Foundation. (2022, June 22). Taiwan High Speed Rail. Wikipedia. Retrieved July 8, 2022, from https://en.wikipedia.org/wiki/Taiwan_High_Speed_Rail#cite_note-THSRstats1-79
Wikimedia Foundation. (2022, June 8). List of United States Rapid Transit Systems by ridership. Wikipedia. Retrieved July 8, 2022, from https://en.m.wikipedia.org/wiki/List_of_United_States_rapid_transit_systems_by_ridership
World Bank Group. (2017, May 17). Transforming the urban space through transit-oriented development: The 3V approach. World Bank. Retrieved July 8, 2022, from https://www.worldbank.org/en/topic/transport/publication/transforming-the-urban-space-through-transit-oriented-development-the-3v-approach
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code