論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
多因子模型解構分析師預測結合Black-Litterman模型之指數增值模式 A Quantitative Approach to Incorporating Analyst Forecasts into the Black-Litterman Model |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
71 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-12-14 |
繳交日期 Date of Submission |
2020-12-21 |
關鍵字 Keywords |
多因子模型、Black-Litterman模型、增值投資組合、目標價預測、分析師建議 Black-Litterman model, enhanced portfolio, Multi-factor model, analyst recommendations, Target Price |
||
統計 Statistics |
本論文已被瀏覽 224 次,被下載 54 次 The thesis/dissertation has been browsed 224 times, has been downloaded 54 times. |
中文摘要 |
本研究主要目的是希望透過多因子模型之特性,解析出財務分析師針對S&P500指數成份股中,個別企業發佈之分析報告、目標價預測與分析建議中所隱含之資訊,爾後將其與Black and Litterman(1992)投資組合模型結合,實證測試是否對於傳統投資組合在實務應用上有著增值之效果? 本文使用量化資料分析師目標價預測與質化資料分析師建議實際資料,並考慮分析師預測不確定性,檢測對於此增值投資組合流程應用於實務之可行性。實證結果發現,不論是目標價預測與分析師建議,在此量化增值模式之最適化投資組合過程中,其增值效果有著明顯的績效表現以及顯著的實證結果支持此模式之績效能優於標的指數。 |
Abstract |
The main purpose of this study is to use the characteristics of the multi-factor model to decompose the implicit information in the analysts’ reports, target price forecasts and analysis recommendations issued by financial analysts for the components stocks of the S&P500 index stocks, and then combining them with Black-Litterman model (Black and Litterman,1992) to examine whether the quantitative process that employs a multi-factor model to determine the factors required for shaping forecasts is feasible. This study uses quantitative data on analysts’ target price forecasts and qualitative data on analysts’ recommendations, and considers the uncertainty of analyst forecasts to demonstrate the feasibility of applying this enhanced portfolio process to practice. The empirical results find that whether the target price forecasts or analyst recommendations, included in the quantitative process of optimizing the enhanced portfolio, its enhanced effect has obvious performance and significant empirical results support that the performance of newly combined views of portfolio outperforms the benchmark returns. |
目次 Table of Contents |
論文審定書 ................................................................................................. i 誌 謝 ........................................................................................................ ii 中文摘要 ................................................................................................... iii Abstract ..................................................................................................... iv Table of Contents ....................................................................................... v List of Tables ............................................................................................ vii List of Figures .......................................................................................... viii Chapter 1 Introduction ............................................................................. 1 1.1 Research Motivation and Objectives ............................................. 1 1.2 Contributions to the literature ............................................................. 5 1.3 Structure of the thesis ........................................................................ 5 Chapter 2 Literature Review .................................................................... 7 2.1 Analyst target price forecasts and recommendations ............................... 7 2.2 Multi factor model and Relation with Analyst forecast ............................. 9 2.2.1 The Multi factor model ................................................................ 9 2.2.2 Relation between Analyst Forecasts and Multi-Factor Model ............ 11 2.3 Black-Litterman model ..................................................................... 13 Chapter 3 Data and Methodology ........................................................... 16 3.1 Data Sources ..................................................................................... 16 3.1.1 Analyst forecast data – Price Target .............................................. 16 3.1.2 Analyst forecast data – Recommendation ...................................... 18 3.1.3 Accounting data on Multi-factor model ......................................... 18 3.2 Methodology and Model Construction ................................................... 22 3.2.1Implied expected return on Target price and analyst Recommendation .22 3.2.2 The Multi-Factor Model ............................................................. 25 3.2.3 The original Black-Litterman model ............................................. 27 3.2.4 Implementing the steps of quantitative approach ............................. 35 Chapter 4 Application of the Model and Empirical result ................... 38 4.1 Empirical evidence of Price Target of S&P500 .................................... 38 4.2 Empirical evidence of Analyst Recommendation of S&P500 ..................... 44 Chapter 5 Conclusions and suggestions …............................................. 51 5.1 Conclusions ....................................................................................... 51 5.2 Further Suggestions ............................................................................ 54 References .................................................................................................. 56 |
參考文獻 References |
Altınkılıç, O., Hansen, R. S., & Ye, L. (2016). Can analysts pick stocks for the long-run?. Journal of Financial Economics, 119(2), 371-398. Akbas, F., Markov, S., Subasi, M., & Weisbrod, E. (2018). Determinants and consequences of information processing delay: Evidence from the Thomson Reuters Institutional Brokers’ Estimate System. Journal of Financial Economics, 127(2), 366-388. Barber, B., Lehavy, R., McNichols, M., & Trueman, B. (2001). Can investors profit from the prophets? Security analyst recommendations and stock returns. The Journal of Finance, 56(2), 531-563. Barber, B. M., Lehavy, R., & Trueman, B. (2010). Ratings changes, ratings levels, and the predictive value of analysts’ recommendations. Financial Management, 39(2), 533-553. Black, F. (1972). Capital market equilibrium with restricted borrowing. The Journal of business, 45(3), 444-455. Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial analysts journal, 48(5), 28-43. Bradshaw, M. T., Brown, L. D., & Huang, K. (2013). Do sell-side analysts exhibit differential target price forecasting ability?. Review of Accounting Studies, 18(4), 930-955. Bradshaw, M. T., Huang, A. G., & Tan, H. (2014). Analyst target price optimism around the world. Midwest finance association 2013 annual meeting paper. Brav, A., & Lehavy, R. (2003). An empirical analysis of analysts' target prices: Short-term informativeness and long-term dynamics. Journal of Finance, 58, 1933–1967. Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of finance, 52(1), 57-82. Connor, G. (1995). The three types of factor models: A comparison of their explanatory power. Financial Analysts Journal, 51(3), 42-46. Conrad, J., Cornell, B., Landsman, W. R., & Rountree, B. R. (2006). How do analyst recommendations respond to major news?. Journal of Financial and Quantitative Analysis, 25-49. Chen, N. F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of business, 383-403. Chen, L., Da, Z., & Schaumburg, E. (2015). Implementing Black-Litterman using an equivalent formula and equity analyst target prices. The Journal of Investing, 24(1), 34-47. Cvitanić, J., Lazrak, A., Martellini, L., & Zapatero, F. (2006). Dynamic portfolio choice with parameter uncertainty and the economic value of analysts’ recommendations. The Review of Financial Studies, 19(4), 1113-1156. Da Silva, A. S., Lee, W., & Pornrojnangkool, B. (2009). The Black–Litterman model for active portfolio management. The Journal of Portfolio Management, 35(2), 61-70. Da, Z., & Schaumburg, E. (2011). Relative valuation and analyst target price forecasts. Journal of Financial Markets, 14(1), 161-192. Fabozzi, F. J., Focardi, S. M., & Kolm, P. N. (2006). Incorporating trading strategies in the Black-Litterman framework. The Journal of Trading, 1(2), 28-37. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56. Fama, E. F., & French, K. R. (2012). Size, value, and momentum in international stock returns. Journal of financial economics, 105(3), 457-472. Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22. Fama, E. F., & French, K. R. (2016). Dissecting anomalies with a five-factor model. The Review of Financial Studies, 29(1), 69-103. Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of political economy, 81(3), 607-636. Frankel, R., Kothari, S. P., & Weber, J. (2006). Determinants of the informativeness of analyst research. Journal of Accounting and Economics, 41(1-2), 29-54. He, G., and Litterman, R., 1999. The intuition behind Black-Litterman model portfolios. Investment Management Research, Goldman, Sachs and Company, December. He, P. W., Grant, A., & Fabre, J. (2013). Economic value of analyst recommendations in Australia: an application of the Black–Litterman asset allocation model. Accounting & Finance, 53(2), 441-470. Herold, U. (2003). Portfolio construction with qualitative forecasts. The Journal of Portfolio Management, 30(1), 61-72. Harris, R. D., Stoja, E., & Tan, L. (2017). The dynamic Black–Litterman approach to asset allocation. European Journal of Operational Research, 259(3), 1085-1096. Hobbs, J., Kovacs, T., & Sharma, V. (2012). The investment value of the frequency of analyst recommendation changes for the ordinary investor. Journal of Empirical Finance, 19(1), 94-108. Huang, J., Mian, G. M., & Sankaraguruswamy, S. (2009). The value of combining the information content of analyst recommendations and target prices. Journal of Financial Markets, 12(4), 754-777. Idzorek, T., (2004). A step-by-step guide to the Black-Litterman model: incorporating user specified confidence levels, Working paper (Zephyr Associates Publications). Ivković, Z., & Jegadeesh, N. (2004). The timing and value of forecast and recommendation revisions. Journal of Financial Economics, 73(3), 433-463. Jegadeesh, N., Kim, J., Krische, S. D., & Lee, C. M. (2004). Analyzing the analysts: When do recommendations add value?. The journal of finance, 59(3), 1083-1124. Jegadeesh, N., & Kim, W. (2006). Value of analyst recommendations: International evidence. Journal of Financial Markets, 9(3), 274-309. Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65-91. Jones, R. C., Lim, T., & Zangari, P. J. (2007). The Black-Litterman model for structured equity portfolios. The Journal of Portfolio Management, 33(2), 24-33. Kocuk, B., & Cornuéjols, G. (2020). Incorporating Black-Litterman views in portfolio construction when stock returns are a mixture of normals. Omega, 91, 102008. Lintner, J., (1965). The valuation of risk assets and the selection of risky investments in stock portfolio and capital budgets. The Review of Economics and Statistic, 47 (1), 13-37. Litterman, B. (2004). Modern investment management: an equilibrium approach (Vol. 246). John Wiley & Sons. Loh, R. K., & Mian, G. M. (2006). Do accurate earnings forecasts facilitate superior investment recommendations?. Journal of Financial Economics, 80(2), 455-483. Loh, R. K., & Stulz, R. M. (2011). When are analyst recommendation changes influential?. The review of financial studies, 24(2), 593-627. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77-91. Meucci, A. (2005). Beyond Black-Litterman: Views on non-normal markets. Available at SSRN 848407. Meucci, A. (2009). Enhancing the Black–Litterman and related approaches: Views and stress-test on risk factors. Journal of Asset Management, 10(2), 89-96. Meucci, A. (2010). The Black-Litterman approach: original model and extensions. The Encyclopedia of Quantitative Finance, Wiley. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442. Sorescu, S., & Subrahmanyam, A. (2006). The cross section of analyst recommendations. Journal of Financial and Quantitative Analysis, 139-168. Tee, C. W., Huang, S., & Lim, K. G. (2017). Performance Control and Risk Calibration in the Black–Litterman Model. The Journal of Portfolio Management, 43(3), 126-135. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |