論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-01-05
校外 Off-campus:開放下載的時間 available 2029-01-05
論文名稱 Title |
STEM/STEAM教育的回顧、省思與開拓:從儒家成人之教的觀點 STEM/STEAM Review, Reflection and Development of Education: From the Confucian Perspective of Adult Education |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
165 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-28 |
繳交日期 Date of Submission |
2024-01-05 |
關鍵字 Keywords |
STEAM教育、本體論、全人教育、心靈統整教育、人格統整 STEAM education, ontology, holistic education, spiritual integration education, personality integration |
||
統計 Statistics |
本論文已被瀏覽 116 次,被下載 0 次 The thesis/dissertation has been browsed 116 times, has been downloaded 0 times. |
中文摘要 |
本研究旨在全面回顧STEM/STEAM教育的本質、目的與發展歷程,並以本體論、價值論和認識論的哲學觀點,對STEM/STEAM教育,在實踐中所面臨的問題,進行深入省思與批判。研究的核心目標,在於整理出一條,以儒家成人之教內涵為基礎的,可行STEAM教育模式。經過深入的省思批判,本研究歸納出以下五點重要發現: 首先,對於STEM的稱謂;其次,在STEM/STEAM教育中,對統整的強調,可能輕視了本質的重要性;第三,不容忽視隱藏性危機,可能難以被完全掌控;第四,對STEM/STEAM教育哲學的需求,日益增長;第五,對於心靈統整教育的重視,與實踐仍有待加強。進一步地,本研究將從儒家成人之教的角度,探討STEAM教育中人格統整的重要性,以及六藝對STEM/STEAM教育的啟示。同時,研究將綜合考慮,儒家教育的心靈培養,對於提升STEM/STEAM師資,與人才培訓的啟示作用。 最終,本研究將呈現一個完整的觀點,強調STEM/STEAM教育,核心價值和意義。藉由儒家成人之教的理念,提出一條可行的STEM/STEAM教育模式,以引導學習者,實現個人內在和外在的統整,並透過心靈培養,以培育優秀STEM/STEAM師資和人才。 |
Abstract |
This study aims to comprehensively review the nature, purpose and development process of STEM/STEAM education, and to conduct an in-depth review of the problems faced by STEM/STEAM education in practice from the philosophical perspectives of ontology, axiology and epistemology. Thought and criticism. The core goal of the research is to sort out a feasible STEAM education model based on the connotation of Confucian adult education. After in-depth reflection and criticism, this study summarized the following five important findings: First, the title of STEM; second, the emphasis on integration in STEM/STEAM education may underestimate the essential importance; third, hidden crises cannot be ignored and may be difficult to fully control; fourth, the emphasis on STEM The demand for /STEAM educational philosophy is growing day by day; fifth, the emphasis and practice on spiritual integration education still needs to be strengthened. Furthermore, this study will explore the importance of personality integration in STEAM education from the perspective of Confucian adult education, and the inspiration of the Six Arts to STEM/STEAM education. At the same time, the research will comprehensively consider the spiritual cultivation of Confucian education and its inspiring role in improving STEM/STEAM teachers and talent training. Ultimately, this study will present a complete perspective that emphasizes STEM/STEAM education, core values, and meaning. Based on the Confucian concept of adult education, a feasible STEM/STEAM education model is proposed to guide learners to achieve personal inner and outer integration, and to cultivate outstanding STEM/STEAM teachers and talents through spiritual cultivation. |
目次 Table of Contents |
論文審定書 i 謝誌 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖次 viii 表次 ix 第一章、緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 名詞解釋 4 第四節 研究方法 6 第二章、STEM/STEAM教育之回顧與內涵之省思 9 第一節STEM 教育的緣起與演變過程 9 第二節從STEM/STEAM到STREAM的教育演變 17 第三節STEM/STEAM教育的本質、目的與發展 27 第四節STEM/STEAM教育哲學與批判論述 32 第五節STEM/STEAM教育的述評 43 第六節淺探教育哲學本體論、認識論、價值論與STEM 教育本質內涵之相關49 第三章、儒家成人之教 54 第一節儒家哲學基礎與論述 55 第二節儒家成人之教的內涵 65 第三節儒家六藝意涵 68 第四節六觀:對六藝以生活思維的考察,再探新意 78 第四章、儒家成人之教與STREAM教育之融合 92 第一節在永續發展教育架構下STREAM 與儒家成人之教,結合的重要性與價值脈絡94 第二節儒家成人之教STREAM教育模式與策略 102 第五章、儒家成人之教的STEAM人才與師資培育 107 第一節人格統整之儒學STEAM人才培育 107 圖 次 圖1-1 STEM/STEAM 教育的回顧、省思與開拓:從儒家成人之教的觀點架構圖8 圖2-1 STEM 教育發展演變圖 9 圖2-2 STEAM 教育金字塔 23 圖2-3 對STEM/STEAM 教育之批判、省思與發現 53 圖3-1 儒家成人之教 91 圖5-1 儒學STEAM 人才培育 113 表 次 表2-1 本體論、價值論和認識論哲學論點與對STEM 批判 35 表2-2 STEM 教育誤區,儒家成人之教核心價值啟示與具體的指引 48 表3-1 六藝、六經與身體能感的六根關聯表 88 |
參考文獻 References |
壹、 中文部份 (宋)朱熹(1995)。四書集注。世界書局。 (宋)周敦頤著,朱子注。通書。https://ctext.org/wiki.pl?if=gbandchapter=999963. (宋)陸九淵。象山先生全集,卷11,《與李宰二書》。 (宋)程顥、程頤(1983),王孝魚點校。二程集。中華書局。 (明)王守仁。王陽明全集,卷2。上海古籍出出版社。 (明)王守仁。王陽明全集,卷26。上海古籍出出版社。 (明)王守仁。王陽明全集,卷3。上海古籍出出版社。 (戰國) 孔伋著。中庸淺言新註〔呂祖註解〕。寸心。(出版年:1982) (戰國)曾參著。大學淺言新註〔呂祖註解〕。寸心。(出版年:1982) John P. Miller(2000)。生命教育-推動學校的靈性課程〔張淑美主譯,初版〕。學富文化。(原著出版年:2000) 中國哲學書電子化計劃https://ctext.org/text.pl?node=36772andif=gbandshow=parallel) 方東美(1987)。生生之德。黎明。 朱曉鵬(2021)。論馬一浮對六藝論儒學經典體系的重建,中國孔子網。http://big5.china.com.cn/gate/big5/ccpd.china.com.cn/2021-06/18/content_41595812.html(2021/06/18)。 牟宗三(1993)。心體與性體(一) 。正中書局。 牟宗三(1993)。心體與性體(二) 。正中書局。 余英時(2023)。論天人之際:中國古代思想起源試探。聯經出版社。 吳秋文、孟穎(1983)。易經心傳與天道。靝巨書局。 吳靖國(2022)。新課綱為高中教師帶來的教學負荷。臺灣教育評論月刊,11(3),01-06 139 杜維明(2013)。中庸--論儒學的宗教性。生活·讀書·新知三聯書站。 沈清松(1985)。現代哲學論衡。黎明文化事業公司。 沈瑞慶(1982)。三教聖經。興台文化出版社。 阮孝齊(2018)。各國科學、科技、工程及數學(STEM)教育困境及發展策略。國家教育研究院電子報,168。 周坤億、楊淑晴、羅藝方、林佳弘(2022)。永續發展教育架構下STREAM跨領域教育之探究。課程與教學季刊,25(2),87-128。 林月惠(2006)。杜維明先生與跨文化對話,收錄在李明輝、葉海煙、鄭宗義合編:儒學、文化與宗教──劉述先先生七秩壽慶論文集。臺灣學生書局。 林安梧(2006)。該是談教養的時代了:論孔子的「六藝之教」。鵝湖月刊,372,0。 林坤誼(2018)。STEM 教育在台灣推行的現況與省思。青年研究學報,21(1), 1-9。 姜安琪(2019)。首份《中國STEM教育調研報告》:STEM教育的現狀與問題。中國教科院STEM 教育研究中心。 施良方(1996)。學習理論:學習心理學的理論與原理。麗文文化事業股份有限公司。 段玉裁(1815)。說文解字注。https://www.shuowen.org/view/4937 洪月女、靳知勤(2008)。科學寫作理論與教學之探討。課程與教學,11(2),173-191。 唐君毅(1982)。中國文化之精神價值。正中書局。 唐君毅(2006)。生命存在與心靈境界。中國社會科學出版社。 國家教育研究院課程與教學研究中心主編(2017)。十二年國民基本教育課程綱要:科技領域課程手冊初稿(更新第五版)。國家教育研究院出版。 張佳琳(2017)。美國國家課程時代的來臨:各州共同核心標準之探究。教育研究與發展期刊,9(2),1-32。 140 教育部(2018)。十二年國民基本教育課程綱要-藝術領域。臺北市:作者。 教育部(2021)。十二年國民基本教育課程綱要總綱,教育部,103年11月發布,110年2月修正。 章太炎(1910)。國故論衡,下卷〈原儒〉。上海大共和日報舘。 陳子琳(2001)。易經的奧秘。培琳出版社。 陳怡倩(2017)。從STEAM的A來看美國STEAM教育。香港美術教育期刊,1,4-9。 湯維玲(2019)。探究美國STEM與STEAM教育的發展。課程與教學季刊,22(2),49-78。 程顥、程頤(1983)。河南程氏遺書。漢京文化事業。 馮朝霖、王俊斌(2003)。詮釋學的發展與教育哲學。收錄於邱兆偉(主編),當代教育哲學(頁91-127)。師大書院出版。 馮應謙(2022)。灼見名家:探討香港STEM教育現況、不足、方向、重點及願景。https://www.master-insight.com/ 黃光雄、簡茂發主編(2003)。教育研究法。師大書苑有限公司。 黃俊傑(2002)。大學通識教育探索:台灣經驗與啟示。中華民國通識教育學會。 黃俊傑(2017)。21 世紀大學理念 的激盪與通識教育的展望。通識教育學刊,20,11-38。 黃俊傑(2022)。21世紀的激流與儒家人文精神:問題與啟示。載於林遠澤主編,危疑時代的儒學思考(頁11-34)。國立政治大學出版社。 黃敦晴(2018)。從美國白宮發動的教改,為什麼 STEM、STEAM教育這麼重要?親子天下。取自 https://flipedu.parenting.com.tw/article/4895 資策會(2022)。STEAM教育現況教師調查。https://flipedu.parenting.com.tw/article/004737(2023/02/27) 熊十力(1970)。讀經示要。廣文書局。 劉文典撰,馮逸、喬華點校(1987)。淮南鴻烈集解。中華書局。 141 劉仲蓉、尤煌傑、武金正(2017)。西洋哲學史。國立空中大學。 黎建球(2020)。身心靈整合的躍昇。哲學與文化,47,5-21。 親子天下(2018)。資策會以科技教育新六藝 傳遞科技有愛、教育有感。發表於 107年科技教育暨創新產業年終成果展。https://www.parenting.com.tw/article/5078305(2018/11/13) 賴光真(2022)。中小學課程負荷過重的成因、影響與對策。臺灣教育評論月刊,11(3),14-21 瀧川龜太郎、魯實先、陳直(1983)。史記會注考證。洪氏出版社。 貳、 外文部份 AAAS. (1993). Benchmarks for science literacy. Oxford University Press. Abimbola, I. O. & Omosewo, E. O. (2006). History of science for degree students. Ilorin: Oyinwola Press. Accreditation Board for Engineering and Technology. (2007-2008). Engineering accreditation criteria. Baltimore, MD: Author. Aikenhead, G. S. (2005). Research into STS science education. Educacion Quimica, 16, 384-397. Allchin, D. (1999). Values in science: An educational perspective. Science & Education, 8, 1-12. Alvermann, D. (2004). Multiliteracies and self questioning in the service of science learning. In E. W. Saul (Ed.), Crossing borders in literacy and science instruction: perspectives in theory and practice (pp. 226-238). International Reading Association/National Science Teachers Association. Apple Inc (2009). American Recovery and Reinvestment Act: Stimulus opportunities for integrating technology with education goals (Apple white paper). Retrieved from http://images.apple.com/education/docs/Apple-Education_Stimulus_ White_Paper.pdf Apple, M. (1992). Do the standards go far enough? Power, policy, and practice in mathematics education. Journal for Research in Mathematics Education, 23(5), 412–431. Aristotle. (1983). Works. In four volumes. T.4. – Moscow: Thought. Badmus, O. T., & Omosewo, E. O. (2020). Evolution of STEM, STEAM and 143 STREAM education in Africa: The implication of the knowledge gap. International Journal on Research in STEM Education, 2(2), 99–106. https://doi.org/10.31098/ijrse.v2i2.227 Bell, P., Van Horne, K., & Cheng, B. H. (2017). Special issue: Designing learning environments for equitable disciplinary identification. Journal of the Learning Sciences, 26(3), 367–375. https://doi.org/10.1080/10508406.2017.1336021, Bequette, J. W., & Bequette, M. B. (2012). A place for art and design education in the STEM conversation. Art education, 65(2), 40-47. Biyanto. (2015). Filsafat Ilmu dan Ilmu KeIslaman. Pustaka Pelajar. Boiarsky, C. (2005, July). Making connections: Teaching writing to engineers and technical writers in a multicultural environment. In IPCC 2005. Proceedings. International Professional Communication Conference (pp. 47-53). IEEE. Bowers, C. A. (1993). Critical essays on education, modernity, and the recovery of the ecological imperative. New York: Teachers College Press. Brown, T. (2010). Truth and the renewal of knowledge: The case of mathematics education. Educational Studies in Mathematics, 75, 329–343. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company. Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70, 30-35. Bybee, R. W. (2010). The teaching of science: 21st century perspectives. Arlington, Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press. Casey, B. (2012). STEM education: Preparing for the jobs of the future. Report by the U.S. Congress Joint Economic Committee. Retrieved July 21, 2017 from https://www.jec.senate.gov/public/ _cache/ files/6aaa7e1f-9586-47be-82e7- 144 326f47658320/ stem-education---preparing-for-the-jobs-of-the-future-.pdf Catterall, L. G. (2017). A brief history of STEM and STEAM from an inadvertent insider. The STEAM Journal, 3(1), 1-13. Chesky, N. Z., & Wolfmeyer, M. R. (2015). Critical inquiry into STEM education. In N. Z. Chesky & M. R. Wolfmeyer (Eds.) Philosophy of STEM education: A critical investigation (pp. 44-74). New York: Palgrave Macmillan. Clark, A. C., & Ernst, J. V. (2008). STEM-based computational modeling for technology education. Journal of Technology Studies, 34(1), 20-27. Crannell, A. (2009). Mathematics and the aesthetic: A book review. Notices of the AMS, 56(2), 233–236 D’Ambrosio, U. (1994). Cultural framing of mathematics teaching and learning. In R. Biehler, R. W. Scholz, R. Strässer & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 443-455). Dordrecht: Kluwer. Daugherty, M. K. (2013). The prospect of an "A" in STEM education. Journal of STEM Education: Innovations and Research, 14(2), 10–15. DeBoer, G., Carman, E., & Lazzaro, C. (2010). The role of language arts in a successful STEM education program. College Board. Retrieved from http://files.eric.ed.gov/fulltext/ED563458.pdf. Devlin, K. (2000). The math gene: How mathematical thinking evolved and why numbers are like gossip. Basic Books. Ejiwale, J. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63-74. Emdin, C. (2022). STEM steam, make a dream: Reimagining the culture of science, technology, engineering and mathematics. International Center for Leadership in Education. Ernest, P. (1991). The philosophy of mathematics education. The Falmer Press. 145 Ernest, P. (2004). What is the philosophy of mathematics education. Contribution for Discussion Group 4. https://education.exeter.ac.uk/research/centres/stem/publications/pmej/pome18/PhoM_%20for_ICME_04.htm Escorcia, D., Passerault, J., Ros, C., & Pylouster, J. (2017). Profiling writers: Analysis of writing dynamics among college students. Metacognition Learning, 12(2), 233-273. https://doi.org/10.1007/s11409-016-9166-6. Florida, R. (2002). The rise of the creative class and how it’s transforming work, leisure, community, & everyday life. Basic Books. Frodeman, R., Klein, J. T., & Mitcham, C. (Eds.). (2010). Oxford handbook of Interdisciplinarity. Oxford University Press. Gabbard, D. (2000). Knowledge and power in the global economy: Politics and the rhetoric of school reform. Lawrence Erlbaum Associates. Gault, F. (2011). Social impacts of development of science, technology and innovation indicators. UNU-MERIT Working Papers. Available at SSRN: https://ssrn.com/abstract=1949172 or http://dx.doi.org/10.2139/ssrn.1949172 Gee, J. P. (2004). Language in the science classroom: Academic social languages as the heart of school-based literacy. In E.W. Saul (Ed.), Crossing borders in literacy and science instruction: Perspectives in theory and practice (pp. 13-32). International Reading Association/National Science Teachers Association. Giroux, H. (1983). Theory and resistance in education. Heinemann Educational Books. Giroux, H. (1992). Border crossings: Cultural workers and the politics of education. New York: Routledge. Glaser, E. M. (1942). An experiment in the development of critical thinking. The 146 Teachers College Record, 43, 409–410. Granovskiy, B. (2018). Science, technology, engineering, and mathematics (STEM) education: An overview (R45223-4). Congressional Research Service. https://crsreports.congress.gov/product/pdf/R/R45223/4. Guyotte, K. W., Sochacka, N. W., Costantino, T. E., Walther, J., & Kellam, N. N. (2014). STEAM as social practice: Cultivating creativity in transdisciplinary spaces. Art Education, 67(6), 12-19. Guyotte, K. W., Sochacka, N. W., Costantino, T., Kellam, N. N., & Walther, J. (2015). Collaborative creativity in STEAM: Narratives of art education students' experiences in transdisciplinary spaces. International Journal of Education and the Arts, 16(15), 1– 38. http://www.ijea.org/v16n15/ Halpern, D. F. (1993). Assessing the effectiveness of critical-thinking instruction. The Journal of General Education, 42, 238–254. Herrmann, S. D., Adelman, R. M., Bodford, J. E., Graudejus, O., Okun, M. A., & Kwan, V. S. (2016). The effects of a female role model on academic performance and persistence of women in STEM courses. Basic and Applied Social Psychology, 38(5), 258-268. http://doi.org/10.1080/01973533.2016.1209757 Hiebert, J. (1999). Relationships between research and the NCTM standards. Journal for Research in Mathematics Education, 30(1), 3-19. Hopkinson, P.G., & James, P. (2010). Practical pedagogy for embedding ESD in science, technology, engineering and mathematics curricula. International Journal of Sustainability in Higher Education, 11(4), 365-379 House Committee on Education and the Workforce. (2017). H.Con.Res.29 — 115th Congress (2017-2018). Expressing the sense of the Congress regarding the need for increased diversity and inclusion in the tech sector, and increased access to opportunity in science, technology, engineering, arts, and mathematics (STEAM) 147 education. Retrieved from https://www.congress.gov/bill/115th-congress/ house-concurrent-resolution Hurd, P. D. (1998). Scientific literacy: New minds for a changing world. Science Education, 82(3), 407-416. https://doi.org/10.1002/(SICI)1098-237X(199806)82:3<407::AID-SCE6>3.0.CO;2-G ITEA. (2000/2002/2007). Standards for technological literacy: Content for the study of technology. Reston, VA: Author. Ivey, A. E., Ivey, M. B., & Simek-Downing, L. (1997). Counseling and psychotherapy: A multicultural perspective. Allyn Bacon. Jones, A. (2007). The valuing of technology in the science curriculum. In D. Corrigan, J. Dillon, & R. Gunston (Eds.), The re-emergence of values in science education (pp. 89–100). Rotterdam: Sense. Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258. Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press. Kuhn, T. S. (2012 [1962]). The structure of scientific revolutions (4th ed). Chicago, IL: University of Chicago Press. Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94. Lawrence, R. J. (2006). Housing and health: Beyond disciplinary confinement. Journal of Urban Health, 83, 540-549. Lawson, T. (ed.) (2005). Reason and inspiration in Islam. Theology, philosophy and mysticism in Muslim thought, New York: I.B. Tauris & Co Ltd. Lockwood-Bordaña, K. D. (2022). A STEAM mindset: Teaching the next generation to problem solve. STEAM Kids, LLC., Milford, CT. 148 Maeda, J. (2013). STEM + art = STEAM. The STEAM Journal, 1(1), 1–3. Makrakis, V. (2018). From STEM to STEAM and to STREAM enabled through meaningful critical reflective learning. Retrieved from https://www.researchgate.net/publication/346965218_From_STEM_to_STEAM_and_to_STREAM_enabled_through_meaningful_critical_reflective_learning. Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95(5), 877–907. Martin, D. (2003). Hidden assumptions and unaddressed questions in mathematics or all rhetoric. The Mathematics Educator, 13(2), 7–21. McComas, W. F., & Burgin, S. R. (2020). A critique of “STEM” education revolution-in-the-making, passing fad, or instructional imperative. Science & Education, 29(4), 805–829. https://doi.org/10.1007/s11191-020-00138-2. Miller, R. (1991). New directions in education. Selections from Holistic Education Review. Holistic Education Press. Mirzayevich, K. B. (2022). The role of education and the Mahalla Institute in forming the personality of the person. Central Asian Journal of Theoretical and Applied Science, 3(6), 515-521. Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141-178. Morrison, J. (2006). Attributes of STEM education: The student, the school, the classroom [Monograph]. Baltimore, MD: Teaching Institute for Excellence in STEM. Retrieved from http://www.tiesteach.org/ Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Baltimore, MD: TIES, 3. 149 Natinal Research Council (2010). Exploring the intersection of science education and 21stcentury skills: A workshop summary. Washington, DC: National Academies Press. National Governors Association Center for Best Practices, Council of Chief State School Officers. (NGA Center & CCSSO) (2010a). Common Core State Standards. English Language Arts Standards. Washington, DC: Author. National Research Council (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies Press. https://doi.org/10.17226/12635 National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. 10.17226/13165. National Research Council (2014). STEM integration in K–12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press. National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academies Press. National Science and Technology Council (2013). Federal science, technology, engineering, and mathematics (STEM) education: 5-year strategic plan – A report from the Committee on STEM Education. Washington DC: Executive Office of the President of the United States. National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in Science, Mathematics, Engineering, and Technology. 150 Report from Directorate for Education and Human Resources of National Science Foundation. Retrieved from https://files.eric.ed.gov/fulltext/ED404158.pdf National Science Foundation. (2000). Executive summary. Committee on equal opportunities in science and engineering, 1998 biennial report to the United States Congress. An advisory committee to the National Science Foundation. Retrieved from https://www.nsf.gov/pubs/2000/ceose991 /ceose991.html Noor, H. M., & Samsudin, Z. (2016). Visual Thinking courseware: Enhancing critical thinking skills through art criticism. In Proceedings of the 2nd International Colloquium of Art and Design Education Research (i-CADER 2015) (pp. 339-349). Springer. Obama Whitehouse. (2010a). Educate to innovate. Retrieved from https://obamawhitehouse.archives.gov/issues/education/k-12/educate-innovate Obama Whitehouse. (2010b). Changing the equation in STEM education. Retrieved from https://obamawhitehouse.archives.gov/blog/2010/09/16/ changing-equation-stem-education. Office of Science and Technology Policy. (2018b). Charting a course for success: America’s strategy for STEM education: A report by the Committee on STEM education of the national science & technology council. Retrieved fromhttps://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education- Strategic-Plan-2018.pdf Panofsky, E. (1955). Meaning in the visual arts. University of Chicago Press. Parker, C. E., Pillai, S., & Roschelle, J. (2016). Next generation STEM learning for all: A report from the NSF supported forum. Waltham, MA: Education Development 151 Center. Paul, R. (998). Critical thinking: Placing it at the heart of ethics instruction. Journal of Developmental Education 22(2), 36–42. Paul, R., & Elder, L. (2009). Critical thinking: Ethical reasoning and fair-minded thinking, Part I. Journal of Developmental Education, 33(1), 38-39. Paul, R., & Elder, L. (2019). The miniature guide to critical thinking concepts and tools. Rowman & Littlefield. Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31-43. Pinkard, N., Erete, S., Martin, C. K., & McKinney de Royston, M. (2017). Digital youth divas: Exploring narrative-driven curriculum to spark middle school girls’ interest in computational activities. Journal of the Learning Sciences, 26, 478-490. https://doi.org/10.1080/10508406.2017.1307199 Pleasants, J., & Olson, J. K. (2019). What is engineering? Elaborating the nature of engineering for K–12 education. Science Education, 103, 145–166. Pleasants, J., Clough, M. P., Olson, J. K., & Miller, G. (2019). Fundamental issues regarding the nature of technology: Implications for STEM education. Science & Education, 28, 561–597. Pressick-Kilborn, K., Silk, M., & Martin, J. (2021). STEM and STEAM education in Australian K–12 schooling. Oxford Research Encyclopedia of Education. https://doi.org/10.1093/acrefore/9780190264093.013.1684 Qadir, J., Islam, M. Q., & Al-Fuqaha, A. (2022). Toward accountable human-centered AI: Rationale and promising directions. Journal of Information, Communication and Ethics in Society, 20(2), 329-342. Raju, P. K., & Clayson, A. (2010). The future of STEM education: An analysis of two national reports. Journal of STEM Education: Innovations and Research, 11(&6), 152 25-28. Raupp, A. B. (2019). STEM education’s lost decade and tenor. Forbes Technology Council, July 25. https://www.forbes.com/sites/forbestechcouncil/2019/07/25/stem-educations-lost-decade-and-tenor/#43f6101260c8. Rhode Island School of Design. (2014). Support for STEAM. Retrieved from https://www.risd.edu/about/campus-culture/ Robottom, I. (2012). Socio-scientific issues in education: Innovative practices and contending epistemologies. Research in Science Education, 42, 95-107. Root-Bernstein, R. (2011, April 11). The art of scientific and technological innovations [Blog post]. Retrieved from Art of Science Learning website: https://scienceblogs.com/art_of_science_learning/2011/04/11/the-art-of-scientific-and-tech-1 Ruggiero, V. R. 2001. Beyond feelings – A guide to critical thinking. 6th ed. Mountain View, CA: Mayfield. Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26. Sanders, M. E. (2012). Integrative STEM education as best practice. In H. Middleton (Ed.), Explorations of best practice in technology, design, and engineering education (Vol. 2, pp. 103–117). Queensland, Australia: Griffith Institute for Educational Research. Shor, I., & Freire, P. (1987). A pedagogy for liberation: Dialogues on transforming education. Bergin & Garvey. Sinclair, N. (2001). The aesthetic “is” relevant. For the Learning of Mathematics, 21(1), 25–32. http://www.jstor.org/stable/40248343 Skovsmose, O., & Niss, M. (2008). Critical mathematics education for the future. 153 In ICME-10 Proceedings: Proceedings of the 10th International Congress on Mathematical Education. IMFUFA, Roskilde University. Smirnov, E., & Bogun, V. (2010) Information and communication technology in science learning as a tool for “scientific thinking” in engineering education. Natural Science, 2(12), 1400-1406. http://doi: 10.4236/ns.2010.212171. Smith, G. A., & Sobel, D. (2010). Place- and community-based education in schools. New York and London: Routledge. Smith, L. (2013). Subcommittee explores STEM education initiatives to stimulate American competitiveness. Retrieved from https://science.house.gov/news/gov/news/ press-releases/subcommittee-explores-stem-education-initiatives-stimulate- american Sobel, D. (2004). Place-based education: Connecting classroom and community. Nature and Listening, 4(1), 1-7. Sousa, D. A., & Pilecki, T. (2013). From STEM to STEAM: Using brain-compatible strategies to integrate the arts. Corwin Press. STEM Education Act of 2015, 42 USC 1861 § 1020 (2015). Retrieved from https://www.congress.gov/114/plaws/publ59/PLAW-114publ59.pdf Stokel-Walker, C. (2022). AI bot ChatGPT writes smart essays-should academics worry?. Nature. https://doi.org/10.1038/d41586-022-04397-7 Susanto, A. (2021). Filsafat ilmu: Suatu kajian dalam dimensi ontologis, epistemologis, dan aksiologis. Bumi Aksara. Teo, T., Unwin, S., Scherer, R., & Gardiner, V. (2021). Initial teacher training for twenty-first century skills in the Fourth Industrial Revolution (IR 4.0): A scoping review. Computers & Education, 170, 104223. https://doi.org/10.1016/j.compedu.2021.104223 Tymoczko, T. (1993). Value judgments in mathematics: Can we treat mathematics as 154 an art? In A. White (Ed.), Essays in humanistic mathematics (pp. 57–78). Washington, D.C.: Mathematical Association of America Volmert, A., Baran, M., Kendall-Taylor, N., & O’Neil, M. (2013). “You have to have the basics down really well”: Mapping the gaps between expert and public understanding of STEM learning. Washington, DC: FrameWorks Institute. Retrieved from http://www.frameworksinstitute.org/ assets/files/PDF_STEM/STEMMTG10-18-13_proofedandformatted.pdf Wang, H. (2001). Aesthetic experience, the unexpected, and curriculum. Journal of Curriculum and Supervision, 17(1), 90–94. White, D., & Delaney, S. (2021). Full STEAM ahead, but who has the map for integration?--A PRISMA systematic review on the incorporation of interdisciplinary learning into schools. LUMAT: International Journal on Math, Science and Technology Education, 9(2), 9-32. Whitehouse Articles. (2017). President Trump signs memorandum for STEM education funding. Retrieved from https://www.whitehouse.gov/articles/president-trump-signs-memorandum-stem-education-funding Williams, P. J., Jones, A., & Buntting, C. (Eds.). (2015). The future of technology education. Springer. Wilson, K. (2020). Engaging diverse students in STEM: The five dimensions framework. In A. Fitzgerald, C. Haeusler, & L. Pfeiffer (Eds.), STEM education in primary classrooms: Unravelling contemporary approaches in Australia and New Zealand (pp. 12–27). Routledge. Wolfmeyer, M. (2014). Math education for America? Policy networks, big business, and pedagogy wars. New York, NY: Routledge. Yakman, G. (2008). STΣ@M Education: An overview of creating a model of 155 integrative education. Pupils attitude towards technology 2008 annual proceeding, Netherlands. Retrieved from https://www.iteea.org/File.aspx?id=86752&v=75ab076a Yakman, G., & Lee, H. (2012). Exploring the exemplary STEAM education in the US as a practical educational framework for Korea. Journal of the Korean Association for Science Education, 32(6), 1072-1086. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377. http://dx.doi.org/10.1002/sce.20048 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2029-01-05 校外 Off-campus:開放下載的時間 available 2029-01-05 您的 IP(校外) 位址是 216.73.216.54 現在時間是 2025-06-14 論文校外開放下載的時間是 2029-01-05 Your IP address is 216.73.216.54 The current date is 2025-06-14 This thesis will be available to you on 2029-01-05. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-01-05 |
QR Code |