Responsive image
博碩士論文 etd-0006125-144456 詳細資訊
Title page for etd-0006125-144456
論文名稱
Title
7 GHz主動式智慧中繼器之設計
Design of 7 GHz Active Smart Repeater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-12-13
繳交日期
Date of Submission
2025-01-06
關鍵字
Keywords
可重構智慧表面、相位調變器、數位量測平台、結構模式、中繼器量測
reconfigurable intelligent surface (RIS), phase modulator, digital measurement platform, structural mode, repeater measurement
統計
Statistics
本論文已被瀏覽 56 次,被下載 0
The thesis/dissertation has been browsed 56 times, has been downloaded 0 times.
中文摘要
本論文探討7 GHz主動式智慧中繼器(Active Smart Repeater)的設計與實現。研究聚焦於可重構智慧表面(RIS)技術在6G無線通訊中的應用,特別是在系統架構、天線設計、和性能評估等方面。
論文首先設計了一個工作於6.9-7.1 GHz頻段的主動式RIS系統,採用空氣夾層式微帶天線陣列結構,實現了在目標頻段-10 dB以下的反射損耗,隔離度達到20dB以上。同時開發了三種不同類型的相移器方案,包括基於SPDT開關的二相位調變器、TGP2105-SM的6位元數位相移器,以及使用SP4T開關的四相位調變器,插入損耗分別為12 dB、9 dB和8 dB。實驗結果顯示相移器的插入損耗與系統最大訊雜比(SNR)呈現明顯的相關性。
此外,論文針對3.5 GHz頻段進行了貼片天線和八木天線兩種不同結構的比較研究。實驗結果表明,兩種天線在最佳相位配置下的性能相近,但八木天線型RIS在最差相位狀態下表現出更好的性能。研究結果不僅驗證了不同天線結構對RIS性能的影響,也為未來RIS天線設計提供了重要的參考依據。
Abstract
This thesis investigates the design and implementation of a 7 GHz Active Smart Repeater. The research focuses on the application of Reconfigurable Intelligent Surface (RIS) technology in 6G wireless communications, particularly in system architecture, antenna design, and performance evaluation.
The paper first presents the design of an active RIS system operating in the 6.9-7.1 GHz band, utilizing an innovative air-gap microstrip antenna array structure. The system achieves a reflection loss below -10 dB in the target frequency band, with isolation exceeding 20 dB. Three different types of phase shifters were developed: a two-phase modulator based on SPDT switches, a 6-bit digital phase shifter using TGP2105-SM, and a four-phase modulator using SP4T switches, with insertion losses of 12 dB, 9 dB, and 8 dB respectively. Experimental results demonstrate a clear correlation between the phase shifter's insertion loss and the system's maximum Signal-to-Noise Ratio (SNR).
Furthermore, the study compares two different antenna structures - patch antenna and Yagi antenna - in the 3.5 GHz band. Results show that while both antennas perform similarly under optimal phase configuration, the Yagi antenna-based RIS exhibits superior performance under worst-case phase conditions. These findings not only validate the impact of different antenna structures on RIS performance but also provide valuable reference for future RIS antenna design.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
第一章 緒論 1
1.1研究背景 1
1.2可重構智慧表面 3
1.2.1 RIS架構介紹 3
1.3 被動式RIS與主動式RIS差別 5
1.4 章節規劃 7
第二章 主動式 RIS架構升頻 8
2.1 7GHZ RIS單元及陣列介紹 8
2.1.1 微帶天線理論 9
2.1.2微帶天線設計 13
2.1.3陣列理論 17
2.1.4 微帶天線陣列設計 19
2.2 RIS單元-元件介紹 23
2.2.1 RIS系統元件介紹 23
2.2.2 自製元件介紹 26
2.3 主動式RIS實驗量測及量測平台介紹 34
2.3.1 數位量測平台 35
2.3.2 兩單元(一收一發)主動式RIS量測結果 37
第三章 天線模式與結構模式的測試 41
3.1 貼片天線與八木天線之模擬 41
3.2 貼片天線與八木天線之比較 50
第四章 結論與未來展望 64
4.1研究總結 64
參考文獻 66
參考文獻 References
[1] Cisco Annual Internet Report (2018-2023) White Paper.
[2] Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655.
[3] J. G. Andrews et al., "What will 5G be?", IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014.
[4] Erik G. Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L. Marzetta. 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52, 2 (2014), 186–195.
[5] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, "Five disruptive technology directions for 5G", IEEE Commun. Mag., vol. 52, no. 2, pp. 74-80, Feb. 2014.
[6] T. S. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!" IEEE Access, vol. 1, pp. 335-349, 2013.
[7] S. Rangan, T. S. Rappaport and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges", Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014.
[8] M. Kamel, W. Hamouda and A. Youssef, "Ultra-dense networks: A survey", IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522-2545, 4th Quart. 2016.
[9] S. Dang, O. Amin, B. Shihada and M.-S. Alouini, "What should 6G be?", Nat. Electron., vol. 3, no. 1, pp. 20-29, 2020.
[10] Q. Wu, S. Zhang, B. Zheng, C. You and R. Zhang, "Intelligent reflecting surface-aided wireless communications: A tutorial", IEEE Trans. Commun., vol. 69, no. 5, pp. 3313-3351, May 2021.
[11] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces", IEEE Access, vol. 7, pp. 116753-116773, Aug. 2019.
[12] Q. Wu and R. Zhang, "Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network", IEEE Commun. Mag., vol. 58, no. 1, pp. 106-112, Jan. 2020.
[13] C. Huang et al., "Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication", IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157-70, Aug. 2019.
[14] M. Di Renzo et al., "Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come", EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1-20, May 2019.
[15] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis and I. Akyildiz, "A new wireless communication paradigm through software-controlled metasurfaces", IEEE Commun. Mag., vol. 56, no. 9, pp. 162-169, Sep. 2018.
[16] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. -S. Alouini and R. Zhang, "Wireless Communications Through Reconfigurable Intelligent Surfaces," in IEEE Access, vol. 7, pp. 116753-116773, 2019.
[17] M. Di Renzo et al., "Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come", EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1-20, May 2019.
[18] L. Li et al., "Electromagnetic reprogrammable coding-metasurface holograms", Nature Commun., vol. 8, no. 1, pp. 197, Aug. 2017.
[19] B. O. Zhu, J. Zhao and Y. Feng, "Active impedance metasurface with full 360° reflection phase tuning", Sci. Rep., vol. 3, no. 1, Nov. 2013.
[20] H. Yang et al., "A programmable metasurface with dynamic polarization scattering and focusing control", Sci. Rep., vol. 6, 2016.
[21] S. V. Hum and J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review", IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 183-198, 2014.
[23] P. -Y. Chen, C. Argyropoulos and A. Alù, "Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines," IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1528-1537, April 2013.
[24] Q. Wu and R. Zhang, "Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming," IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394-5409, Nov. 2019.
[25] C. Pan et al., "Intelligent Reflecting Surface Aided MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer," IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1719-1734, Aug. 2020.
[26] Y. Liu et al., "Reconfigurable Intelligent Surfaces: Principles and Opportunities," IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1546-1577, thirdquarter 2021.
[27] M. Di Renzo et al., "Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison," IEEE Open Journal of the Communications Society, vol. 1, pp. 798-807, 2020.
[28] W. Saad, M. Bennis and M. Chen, "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," in IEEE Network, vol. 34, no. 3, pp. 134-142, May/June 2020.
[29] M. Di Renzo et al., "Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead," IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450-2525, Nov. 2020.
[30] Ö. Özdogan, E. Björnson and E. G. Larsson, "Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling," IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 581-585, May 2020.
[31] S. Abeywickrama, R. Zhang, Q. Wu and C. Yuen, "Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization," IEEE Transactions on Communications, vol. 68, no. 9, pp. 5849-5863, Sept. 2020.
[32] W. Tang et al., "Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement," IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 421-439, Jan. 2021.
[33] C. Huang et al., "Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends," IEEE Wireless Communications, vol. 27, no. 5, pp. 118-125, Oct. 2020.
[34] Z. Zhang et al., "Active RIS vs. Passive RIS: Which Will Prevail in 6G?,"IEEE Transactions on Communications, vol. 71, no. 3, pp. 1707-1725, Mar. 2023.
[35] A. Zappone, M. Di Renzo, F. Shams, X. Qian and M. Debbah, "Overhead-Aware Design of Reconfigurable Intelligent Surfaces in Smart Radio Environments," IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 126-141, Jan. 2021.
[36] L. Dai et al., "Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results," IEEE Access, vol. 8, pp. 45913-45923, Mar. 2020.
[37] E. Basar, "Reconfigurable Intelligent Surface-Based Index Modulation: A New Beyond MIMO Paradigm for 6G," IEEE Transactions on Communications, vol. 68, no. 5, pp. 3187-3196, May 2020.
[38] X. Hu, C. Zhong, Y. Zhang, X. Chen and Z. Zhang, "Location Information Aided Multiple Intelligent Reflecting Surface Systems," IEEE Transactions on Communications, vol. 68, no. 12, pp. 7948-7962, Dec. 2020.
[39] C. Pan et al., "Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces," IEEE Transactions on Wireless Communications, vol. 19, no. 8, pp. 5218-5233, Aug. 2020.
[40] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis and I. Akyildiz, "A New Wireless Communication Paradigm through Software-Controlled Metasurfaces," IEEE Communications Magazine, vol. 56, no. 9, pp. 162-169, Sept. 2018.
[41] H. Guo, Y. -C. Liang, J. Chen and E. G. Larsson, "Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks," IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3064-3076, May 2020.
[42] S. Zhang and R. Zhang, "Capacity Characterization for Intelligent Reflecting Surface Aided MIMO Communication," IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1823-1838, Aug. 2020.
[43] M. Najafi, V. Jamali, R. Schober and H. V. Poor, "Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces,"IEEE Transactions on Communications, vol. 69, no. 4, pp. 2673-2691, April 2021.
[44] A. Zappone, M. Di Renzo, X. Xi and M. Debbah, "On the Optimal Number of Reflecting Elements for Reconfigurable Intelligent Surfaces,"IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 464-468, Mar. 2021.
[45] H. Pues and A. v. d. Capelle, “Accurate transmission-line model for the rectangular microstrip antenna,” IEE Proceedings H (Microwaves, Optics and Antennas), vol. 131, no. 6, pp. 334-340.
[46] D. Pozar, “A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 12, pp. 1439-1446, 1986.
[47] W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012.
[48] R. Garg, P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip antenna design handbook. Artech house, 2001.
[49] S. F. Farida, P. M. Hadalgi, P. V. Hunagund, and S. R. Ara, "Effect of substrate thickness and permittivity on the characteristics of rectangular microstrip antenna," in 1998 Conference on Precision Electromagnetic Measurements Digest (Cat. No.98CH36254),in Proc, pp. 598-599, 6-10 July 1998.
[50] K. Budayawan, M. Isa, A. Ismail, and A. Raja Syamsul, "Implementation model of rectangular microstrip antenna with multilayer air gap," in 2011 IEEE International RF & Microwave Conference,in Proc, pp. 274-277, 12-14Dec. 2011.
[51] 吳季紘(2023) "Sub—6 GHz之主動式可重構智慧表面設計",國立中山大學電機工程學系研究所碩士論文。
[52] 林信豪(2022) "應用於Sub—6 GHz之可重構智慧表面設計",國立中山大學電機工程學系研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-01-06
校外 Off-campus:開放下載的時間 available 2028-01-06

您的 IP(校外) 位址是 3.143.110.79
現在時間是 2025-04-03
論文校外開放下載的時間是 2028-01-06

Your IP address is 3.143.110.79
The current date is 2025-04-03
This thesis will be available to you on 2028-01-06.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code