論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
傑納斯過渡金屬二硫屬化物的理論與實驗研究 Theoretical and experimental investigations of Janus transition metal dichalcogenides |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
90 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-12-13 |
繳交日期 Date of Submission |
2024-01-08 |
關鍵字 Keywords |
傑納斯、過渡金屬二硫化物、如拉許巴分裂、電漿、硒化 Janus, Transition metal dichalcogenides, Rashba Splitting, Plasma, Selenization |
||
統計 Statistics |
本論文已被瀏覽 85 次,被下載 5 次 The thesis/dissertation has been browsed 85 times, has been downloaded 5 times. |
中文摘要 |
傑納斯過渡金屬二硫化物(TMDs)是一種新型的二維(2D)材料,由於其非對稱結構具有新穎的特性。在傑納斯 TMDs中,鏡像對稱性的破壞導致了一些有趣的現象,如拉許巴分裂(Rashba splitting)、垂直壓電效應和二次諧波產生(SHG)性能等。本研究中我們對傑納斯 TMDs進行了理論和實驗分析。首先,我們探討基於Pt的傑納斯單層(ML)PtXY(X,Y = S,Se,Te)上的各向異性拉許巴分裂,並發現有所有三種基於Pt的傑納斯 TMD單層在聲子色散圖上都是熱力學穩定的。此外,所有基於Pt的傑納斯 TMD單層都保留了1T相作為穩定結構,如同其對應TMD(例如PtS2,PtSe2和PtTe2)。在電子性質方面,PtSSe、PtSTe和PtSeTe是具有間接帶隙的絕緣材料,分別為2.108、1.335和1.221電子伏特。Pt系列之傑納斯 TMD,由於其單層中心對稱性破壞,可以觀察到自旋軌道耦合(SOC)引起的各向異性拉許巴分裂。在傑納斯 PtXY單層中,PtSSe在M到Γ (α_R^(M-Γ))和M到K(α_R^(M-K))分別具有最大的拉許巴強度(1.654和1.333 eV•Å-1)。同時,對PtSTe和PtSeTe,其Γ (α_R^(M-Γ))許巴強度分別為1.103和1.244 eV•Å-1,而(α_R^(M-K))值則分別為0.435和0.746 eV•Å-1。此外,根據自旋紋理結果,德雷塞爾豪斯效應(Dresselhaus effect)對各向異向性自旋分裂做出了貢獻。此外,拉許巴分裂和帶隙可以通過應用雙軸應變來調控。接下來,我們討論了透過電漿輔助硒化(PASP)成功合成ML 傑納斯 TMDs。通過控制溫度、電漿功率和硒化時間等動力學參數,可以將頂部硫(S)原子置換為Se,從而合成傑納斯 TMDs。根據拉曼結果,PASP可應用於大面積成長,因為135個單獨的MoS2薄片都成功轉換為傑納斯 MoSSe。此外,透過PASP可以成功合成傑納斯 MoSSe和WSSe單層,揭示了合成傑納斯 TMDs的過程的普遍性。我們可以藉由改變硒化溫度控制其相變,在200°C時,可以獲得2H相的傑納斯 MoSSe,而將溫度提高到400°C或600°C則可以得到MoSSe的1T/1T’相。最後,我們透過PASP從2英寸連續MoS2薄膜合成晶圓尺寸的傑納斯 MoSSe。我們的研究結果對於傑納斯 TMDs應用於未來新型電子和光電子器件提供了重要貢獻。 |
Abstract |
Janus transition metal dichalcogenides (TMDs) are new kinds of two-dimensional (2D) materials that possess novel properties due to their asymmetric structure. The breaking of the out-of-plane mirror symmetry in Janus TMDs results to interesting phenomena such as Rashba splitting, vertical piezoelectric effect, and a second harmonic generation (SHG) performance, among others. In this work, we performed theoretical and experimental investigations of Janus TMDs. First, we explored the anisotropic Rashba splitting on Pt-based Janus monolayers (ML) PtXY (X,Y = S, Se, Te). We found that all three Pt-based Janus TMD monolayers are thermodynamically stable based on the Phonon dispersion plot. Furthermore, all the Pt-based Janus TMD monolayers retained the 1T-phase as the stable structure, like their classical counterpart (e.g., PtS2, PtSe2, and PtTe2). In terms of electronic properties, PtSSe, PtSTe, and PtSeTe are insulating materials with an indirect bandgap of 2.108, 1.335, and 1.221 eV, respectively. Due to centrosymmetry breaking in the Pt-based Janus TMD monolayers, spin-orbit coupling (SOC)-induced anisotropic Rashba splitting can be observed. Among the Janus PtXY monolayers, PtSSe has the greatest Rashba strength at 1.654 and 1.333 eV•Å-1 from M to Γ (α_R^(M-Γ)) and M to K (α_R^(M-K)), respectively. Meanwhile, for PtSTe and PtSeTe, the Rashba strengths for α_R^(M-Γ)are 1.103 and 1.244 eV•Å-1, while the values for α_R^(M-K) are 0.435 and 0.746 eV•Å-1, respectively. Also, based on the spin texture results, Dresselhaus effect contributed to the anisotropic spin-splitting. Furthermore, the Rashba splitting and bandgap can be manipulated by applying biaxial strain. Next, we discuss our successful synthesis of ML Janus TMDs through plasma-assisted selenization process (PASP). By carefully controlling the kinetic parameters such as temperature, plasma power, and selenization time, the top sulfur (S) atom can be replaced with Se, creating the Janus TMDs. Based on the Raman results, PASP is suitable for high-yield production as 135 individual MoS2 flakes were all converted to Janus MoSSe. Furthermore, Janus MoSSe and WSSe monolayers can be created through PASP, indicating the universality of the process for synthesizing Janus TMDs. By changing the selenization temperature, phase-transition can be observed. At 200 °C, Janus MoSSe at 2H can be obtained while increasing the temperature to 400 °C or 600 °C can lead to 1T/1T’ phase of MoSSe. Finally, wafer-scale Janus MoSSe was synthesized by PASP from 2-inch continuous MoS2. Our findings provide significant contributions towards full exploration of Janus TMDs for future novel electronics and optoelectronics devices application. |
目次 Table of Contents |
Table of Contents Dissertation Validation Letter i Dissertation Publication Form ii Abstract (Chinese)iii Abstract (English)iv Table of Contentsv List of Figuresvii List of Tablesix List of Publicationsx Chapter 1 Introduction1 1.1 The rise of two-dimensional (2D) materials1 1.2 Janus 2D materials2 1.2.1 Janus Graphene3 1.2.2 Janus Silicene4 1.2.3 Janus Germanene4 1.3 Janus Transition metal dichalcogenides (TMDs)5 Chapter 2 Motivation8 Chapter 3 Anisotropic rashba splitting in Pt-based janus monolayers PtXY (X,Y= S, Se, or Te)9 3.1 Introduction9 3.2 Methodology11 3.3 Results and Discussion12 3.4 Conclusion22 Chapter 4 Controllable structure-engineered janus and alloy polymorphic monolayer transition metal dichalcogenides by plasma assisted selenization process toward high-yield and wafer-scale production24 4.1 Introduction24 4.2 Methodology27 4.2.1 Synthesis of monolayer TMDs27 4.2.2 Synthesis of a wafer-scale MoS2 film28 4.2.3 Plasma-assisted selenization process on formation of Janus monolayer TMDs28 4.2.4 Transfer of a Wafer-scale Janus MoSSe film29 4.2.5 Optical measurements29 4.2.6 FET device fabrication and measurements30 4.2.7 Nanogeneration Performance Test30 4.2.8 Density function theory (DFT) calculations30 4.3 Results and Discussion31 4.4 Conclusion43 Chapter 5 Concluding remarks44 Chapter 6 Future Prospective45 Appendix for Chapter 347 Appendix for Chapter 461 Bibliography80 |
參考文獻 References |
[1]A. K. Geim and K. S. Novoselov, The Rise of Graphene, Nature Mater 6, 183 (2007). [2]V. Shanmugam, R. A. Mensah, K. Babu, S. Gawusu, A. Chanda, Y. Tu, R. E. Neisiany, M. Försth, G. Sas, and O. Das, A Review of the Synthesis, Properties, and Applications of 2D Materials, Part & Part Syst Charact 39, 2200031 (2022). [3]J. Mu, C. Hou, H. Wang, Y. Li, and Q. Zhang, Graphene-Carbon Nanotube Papers for Energy Conversion and Storage under Sunlight and Heat, Carbon 95, 150 (2015). [4]Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, Organic Photovoltaic Cells Based on an Acceptor of Soluble Graphene, Applied Physics Letters 92, 223303 (2008). [5]R. You, Y. Liu, Y. Hao, D. Han, Y. Zhang, and Z. You, Laser Fabrication of Graphene‐Based Flexible Electronics, Advanced Materials 32, 1901981 (2020). [6]M. G. Stanford, C. Zhang, J. D. Fowlkes, A. Hoffman, I. N. Ivanov, P. D. Rack, and J. M. Tour, High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit, ACS Appl. Mater. Interfaces 12, 10902 (2020). [7]E. B. Secor, S. Lim, H. Zhang, C. D. Frisbie, L. F. Francis, and M. C. Hersam, Gravure Printing of Graphene for Large‐area Flexible Electronics, Advanced Materials 26, 4533 (2014). [8]X. Wang, W. Xie, and J. Xu, Graphene Based Non‐Volatile Memory Devices, Advanced Materials 26, 5496 (2014). [9]S. M. Sattari-Esfahlan and C.-H. Kim, Flexible Graphene-Channel Memory Devices: A Review, ACS Appl. Nano Mater. 4, 6542 (2021). [10]M. Sup Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S. Hwan Lee, P. Kim, J. Hone, and W. Jong Yoo, Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices, Nat Commun 4, 1624 (2013). [11]Y. Huang, J. Liang, and Y. Chen, The Application of Graphene Based Materials for Actuators, J. Mater. Chem. 22, 3671 (2012). [12]A. F. Carvalho, B. Kulyk, A. J. S. Fernandes, E. Fortunato, and F. M. Costa, A Review on the Applications of Graphene in Mechanical Transduction, Advanced Materials 34, 2101326 (2022). [13]A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A Review on Silicene — New Candidate for Electronics, Surface Science Reports 67, 1 (2012). [14]M. Ezawa, Photoinduced Topological Phase Transition and a Single Dirac-Cone State in Silicene, Phys. Rev. Lett. 110, 026603 (2013). [15]B. Feng et al., Superstructure-Induced Splitting of Dirac Cones in Silicene, Phys. Rev. Lett. 122, 196801 (2019). [16]A. Molle, C. Grazianetti, L. Tao, D. Taneja, Md. H. Alam, and D. Akinwande, Silicene, Silicene Derivatives, and Their Device Applications, Chem. Soc. Rev. 47, 6370 (2018). [17]N. Liu, G. Bo, Y. Liu, X. Xu, Y. Du, and S. X. Dou, Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges, Small 15, 1805147 (2019). [18]L. Seixas, J. E. Padilha, and A. Fazzio, Quantum Spin Hall Effect on Germanene Nanorod Embedded in Completely Hydrogenated Germanene, Phys. Rev. B 89, 195403 (2014). [19]A. N. Sosa, B. J. Cid, Á. Miranda, L. A. Pérez, G. H. Cocoletzi, and M. Cruz-Irisson, A DFT Investigation: High-Capacity Hydrogen Storage in Metal-Decorated Doped Germanene, Journal of Energy Storage 73, 108913 (2023). [20]A. Zia, Z.-P. Cai, A. B. Naveed, J.-S. Chen, and K.-X. Wang, MXene, Silicene and Germanene: Preparation and Energy Storage Applications, Materials Today Energy 30, 101144 (2022). [21]J. Zheng, Y. Xiang, C. Li, R. Yuan, F. Chi, and Y. Guo, Multichannel Depletion-Type Field-Effect Transistor Based on Ferromagnetic Germanene, Phys. Rev. Applied 16, 024046 (2021). [22]B. N. Madhushankar, A. Kaverzin, T. Giousis, G. Potsi, D. Gournis, P. Rudolf, G. R. Blake, C. H. Van Der Wal, and B. J. Van Wees, Electronic Properties of Germanane Field-Effect Transistors, 2D Mater. 4, 021009 (2017). [23]A. H. Bayani, D. Dideban, M. Vali, and N. Moezi, Germanene Nanoribbon Tunneling Field Effect Transistor (GeNR-TFET) with a 10 Nm Channel Length: Analog Performance, Doping and Temperature Effects, Semicond. Sci. Technol. 31, 045009 (2016). [24]L. Kou, C. Chen, and S. C. Smith, Phosphorene: Fabrication, Properties, and Applications, J. Phys. Chem. Lett. 6, 2794 (2015). [25]A. Khandelwal, K. Mani, M. H. Karigerasi, and I. Lahiri, Phosphorene – The Two-Dimensional Black Phosphorous: Properties, Synthesis and Applications, Materials Science and Engineering: B 221, 17 (2017). [26]M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J. E. Mroczkowska, G. Sumanasekera, and J. B. Jasinski, Recent Advances in Synthesis, Properties, and Applications of Phosphorene, Npj 2D Mater Appl 1, 5 (2017). [27]A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, Phosphorene: From Theory to Applications, Nat Rev Mater 1, 16061 (2016). [28]D. Gupta, V. Chauhan, and R. Kumar, A Comprehensive Review on Synthesis and Applications of Molybdenum Disulfide (MoS2) Material: Past and Recent Developments, Inorganic Chemistry Communications 121, 108200 (2020). [29]F. Reale et al., High-Mobility and High-Optical Quality Atomically Thin WS 2, Sci Rep 7, 14911 (2017). [30]A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, and S. Das, Benchmarking Monolayer MoS2 and WS2 Field-Effect Transistors, Nat Commun 12, 693 (2021). [31]T. Chowdhury, E. C. Sadler, and T. J. Kempa, Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D, Chem. Rev. 120, 12563 (2020). [32]W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications, Materials Today 20, 116 (2017). [33]V. Montes-García and P. Samorì, Janus 2D Materials via Asymmetric Molecular Functionalization, Chem. Sci. 13, 315 (2022). [34]X. Tang and L. Kou, 2D Janus Transition Metal Dichalcogenides: Properties and Applications, Physica Status Solidi (b) 259, 2100562 (2022). [35]C. Casagrande, P. Fabre, E. Raphaël, and M. Veyssié, “Janus Beads”: Realization and Behaviour at Water/Oil Interfaces, Europhys. Lett. 9, 251 (1989). [36]L. Zhang, Z. Yang, T. Gong, R. Pan, H. Wang, Z. Guo, H. Zhang, and X. Fu, Recent Advances in Emerging Janus Two-Dimensional Materials: From Fundamental Physics to Device Applications, J. Mater. Chem. A 8, 8813 (2020). [37]S.-W. Ng, N. Noor, and Z. Zheng, Graphene-Based Two-Dimensional Janus Materials, NPG Asia Mater 10, 217 (2018). [38]B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, and Z. Liu, Photochemical Chlorination of Graphene, ACS Nano 5, 5957 (2011). [39]M. Yang, L. Zhou, J. Wang, Z. Liu, and Z. Liu, Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding, J. Phys. Chem. C 116, 844 (2012). [40]R. Singh and G. Bester, Hydrofluorinated Graphene: Two-Dimensional Analog of Polyvinylidene Fluoride, Phys. Rev. B 84, 155427 (2011). [41]F. Li and Y. Li, Band Gap Modulation of Janus Graphene Nanosheets by Interlayer Hydrogen Bonding and the External Electric Field: A Computational Study, J. Mater. Chem. C 3, 3416 (2015). [42]M. Sun, Q. Ren, S. Wang, J. Yu, and W. Tang, Electronic Properties of Janus Silicene: New Direct Band Gap Semiconductors, J. Phys. D: Appl. Phys. 49, 445305 (2016). [43]N. Wang, H. Guo, Y. Liu, J. Zhao, Q. Cai, and X. Wang, Asymmetric Functionalization as a Promising Route to Open the Band Gap of Silicene: A Theoretical Prediction, Physica E: Low-Dimensional Systems and Nanostructures 73, 21 (2015). [44]Y. Mao, Z. Yao, J. Yuan, and X. Chang, Two-Dimensional Germanene-Based Janus Material Ge8HnX8−n (n = 0–8, X = F, Cl, Br, I) for Photovoltaic and Photocatalytic Applications, Applied Surface Science 598, 153633 (2022). [45]R. Li, Y. Cheng, and W. Huang, Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments, Small 14, 1802091 (2018). [46]J. Zhang et al., Janus Monolayer Transition-Metal Dichalcogenides, ACS Nano 11, 8192 (2017). [47]A.-Y. Lu et al., Janus Monolayers of Transition Metal Dichalcogenides, Nature Nanotech 12, 744 (2017). [48]D. B. Trivedi et al., Room‐Temperature Synthesis of 2D Janus Crystals and Their Heterostructures, Adv. Mater. 32, 2006320 (2020). [49]Y. Guo et al., Designing Artificial Two-Dimensional Landscapes via Atomic-Layer Substitution, Proc. Natl. Acad. Sci. U.S.A. 118, e2106124118 (2021). [50]Y.-C. Lin et al., Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures, ACS Nano 14, 3896 (2020). [51]R. Sant et al., Synthesis of Epitaxial Monolayer Janus SPtSe, Npj 2D Mater Appl 4, 41 (2020). [52]P. A. L. Sino, L.-Y. Feng, R. A. B. Villaos, H. N. Cruzado, Z.-Q. Huang, C.-H. Hsu, and F.-C. Chuang, Anisotropic Rashba Splitting in Pt-Based Janus Monolayers PtXY (X,Y = S, Se, or Te), Nanoscale Adv. 3, 6608 (2021). [53]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306, 666 (2004). [54]X. Zhang, L. Hou, A. Ciesielski, and P. Samorì, 2D Materials Beyond Graphene for High‐Performance Energy Storage Applications, Advanced Energy Materials 6, 1600671 (2016). [55]S. Z. Butler et al., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano 7, 2898 (2013). [56]A. Gupta, T. Sakthivel, and S. Seal, Recent Development in 2D Materials beyond Graphene, Progress in Materials Science 73, 44 (2015). [57]X. Kong, Q. Liu, C. Zhang, Z. Peng, and Q. Chen, Elemental Two-Dimensional Nanosheets beyond Graphene, Chem. Soc. Rev. 46, 2127 (2017). [58]H. C. Lee, W.-W. Liu, S.-P. Chai, A. R. Mohamed, A. Aziz, C.-S. Khe, N. M. S. Hidayah, and U. Hashim, Review of the Synthesis, Transfer, Characterization and Growth Mechanisms of Single and Multilayer Graphene, RSC Adv. 7, 15644 (2017). [59]Z.-Q. Huang, M.-L. Xu, G. Macam, C.-H. Hsu, and F.-C. Chuang, Large-Gap Topological Insulators in Functionalized Ordered Double Transition Metal Carbide MXenes, Phys. Rev. B 102, 075306 (2020). [60]L. H. Karlsson, J. Birch, J. Halim, M. W. Barsoum, and P. O. Å. Persson, Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets, Nano Lett. 15, 4955 (2015). [61]J. Nan, X. Guo, J. Xiao, X. Li, W. Chen, W. Wu, H. Liu, Y. Wang, M. Wu, and G. Wang, Nanoengineering of 2D MXene‐Based Materials for Energy Storage Applications, Small 17, 1902085 (2021). [62]K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications, J. Mater. Chem. C 5, 11992 (2017). [63]Z.-Q. Huang, W.-C. Chen, G. M. Macam, C. P. Crisostomo, S.-M. Huang, R.-B. Chen, M. A. Albao, D.-J. Jang, H. Lin, and F.-C. Chuang, Prediction of Quantum Anomalous Hall Effect in MBi and MSb (M:Ti, Zr, and Hf) Honeycombs, Nanoscale Res Lett 13, 43 (2018). [64]Z.-Q. Huang, C.-H. Hsu, C. P. Crisostomo, G. Macam, J.-R. Su, H. Lin, A. Bansil, and F.-C. Chuang, Quantum Anomalous Hall Insulator Phases in Fe-Doped GaBi Honeycomb, Chinese Journal of Physics 67, 246 (2020). [65]P. Sriram, A. Manikandan, F. Chuang, and Y. Chueh, Hybridizing Plasmonic Materials with 2D‐Transition Metal Dichalcogenides toward Functional Applications, Small 16, 1904271 (2020). [66]R. A. B. Villaos, C. P. Crisostomo, Z.-Q. Huang, S.-M. Huang, A. A. B. Padama, M. A. Albao, H. Lin, and F.-C. Chuang, Thickness Dependent Electronic Properties of Pt Dichalcogenides, Npj 2D Mater Appl 3, 2 (2019). [67]H. N. Cruzado et al., Band Engineering and Van Hove Singularity on HfX 2 Thin Films (X = S, Se, or Te), ACS Appl. Electron. Mater. 3, 1071 (2021). [68]R. A. B. Villaos, H. N. Cruzado, J. S. C. Dizon, A. B. Maghirang, Z.-Q. Huang, C.-H. Hsu, S.-M. Huang, H. Lin, and F.-C. Chuang, Evolution of the Electronic Properties of ZrX 2 (X = S, Se, or Te) Thin Films under Varying Thickness, J. Phys. Chem. C 125, 1134 (2021). [69]L.-Y. Feng, R. A. B. Villaos, H. N. Cruzado, Z.-Q. Huang, C.-H. Hsu, H.-C. Hsueh, H. Lin, and F.-C. Chuang, Magnetic and Topological Properties in Hydrogenated Transition Metal Dichalcogenide Monolayers, Chinese Journal of Physics 66, 15 (2020). [70]L.-Y. Feng, R. A. B. Villaos, Z.-Q. Huang, C.-H. Hsu, and F.-C. Chuang, Layer-Dependent Band Engineering of Pd Dichalcogenides: A First-Principles Study, New J. Phys. 22, 053010 (2020). [71]M.-K. Lin, R. A. B. Villaos, J. A. Hlevyack, P. Chen, R.-Y. Liu, C.-H. Hsu, J. Avila, S.-K. Mo, F.-C. Chuang, and T.-C. Chiang, Dimensionality-Mediated Semimetal-Semiconductor Transition in Ultrathin PtTe 2 Films, Phys. Rev. Lett. 124, 036402 (2020). [72]A. B. Maghirang, Z.-Q. Huang, R. A. B. Villaos, C.-H. Hsu, L.-Y. Feng, E. Florido, H. Lin, A. Bansil, and F.-C. Chuang, Predicting Two-Dimensional Topological Phases in Janus Materials by Substitutional Doping in Transition Metal Dichalcogenide Monolayers, Npj 2D Mater Appl 3, 35 (2019). [73]J. Chen, K. Wu, H. Ma, W. Hu, and J. Yang, Tunable Rashba Spin Splitting in Janus Transition-Metal Dichalcogenide Monolayers via Charge Doping, RSC Adv. 10, 6388 (2020). [74]M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F. M. Peeters, S. Tongay, and H. Sahin, Quantum Properties and Applications of 2D Janus Crystals and Their Superlattices, Applied Physics Reviews 7, 011311 (2020). [75]Y. Ji, M. Yang, H. Lin, T. Hou, L. Wang, Y. Li, and S.-T. Lee, Janus Structures of Transition Metal Dichalcogenides as the Heterojunction Photocatalysts for Water Splitting, J. Phys. Chem. C 122, 3123 (2018). [76]X. Liu, P. Gao, W. Hu, and J. Yang, Photogenerated-Carrier Separation and Transfer in Two-Dimensional Janus Transition Metal Dichalcogenides and Graphene van Der Waals Sandwich Heterojunction Photovoltaic Cells, J. Phys. Chem. Lett. 11, 4070 (2020). [77]P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, and T. Zhai, Doping Engineering and Functionalization of Two-Dimensional Metal Chalcogenides, Nanoscale Horiz. 4, 26 (2019). [78]A. C. Riis-Jensen, S. Manti, and K. S. Thygesen, Engineering Atomically Sharp Potential Steps and Band Alignment at Solid Interfaces Using 2D Janus Layers, J. Phys. Chem. C 124, 9572 (2020). [79]J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, and X. Chen, Intriguing Electronic and Optical Properties of Two-Dimensional Janus Transition Metal Dichalcogenides, Phys. Chem. Chem. Phys. 20, 18571 (2018). [80]S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang, T. Zhai, V. B. Shenoy, and J. Lou, Biomolecular Sensing by Surface-Enhanced Raman Scattering of Monolayer Janus Transition Metal Dichalcogenide, Nanoscale 12, 10723 (2020). [81]X. Yang, D. Singh, Z. Xu, Z. Wang, and R. Ahuja, An Emerging Janus MoSeTe Material for Potential Applications in Optoelectronic Devices, J. Mater. Chem. C 7, 12312 (2019). [82]M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F. M. Peeters, S. Tongay, and H. Sahin, Quantum Properties and Applications of 2D Janus Crystals and Their Superlattices, Applied Physics Reviews 7, 011311 (2020). [83]F. Zhang, H. Zhang, W. Mi, and X. Wang, Electronic Structure, Magnetic Anisotropy and Dzyaloshinskii–Moriya Interaction in Janus Cr 2 I 3 X 3 (X = Br, Cl) Bilayers, Phys. Chem. Chem. Phys. 22, 8647 (2020). [84]Z.-Q. Fan, Z.-H. Zhang, and S.-Y. Yang, High-Performance 5.1 Nm in-Plane Janus WSeTe Schottky Barrier Field Effect Transistors, Nanoscale 12, 21750 (2020). [85]Y. C. Cheng, Z. Y. Zhu, M. Tahir, and U. Schwingenschlögl, Spin-Orbit–Induced Spin Splittings in Polar Transition Metal Dichalcogenide Monolayers, EPL 102, 57001 (2013). [86]T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, and W. Ren, Intrinsic and Anisotropic Rashba Spin Splitting in Janus Transition-Metal Dichalcogenide Monolayers, Phys. Rev. B 97, 235404 (2018). [87]H. C. Koo et al., Rashba Effect in Functional Spintronic Devices, Advanced Materials 32, 2002117 (2020). [88]R. Li, Y. Cheng, and W. Huang, Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments, Small 14, 1802091 (2018). [89]A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, New Perspectives for Rashba Spin–Orbit Coupling, Nature Mater 14, 871 (2015). [90]D. Bercioux and P. Lucignano, Quantum Transport in Rashba Spin–Orbit Materials: A Review, Rep. Prog. Phys. 78, 106001 (2015). [91]T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Spin-Filter Device Based on the Rashba Effect Using a Nonmagnetic Resonant Tunneling Diode, Phys. Rev. Lett. 88, 126601 (2002). [92]D. Yu. Usachov et al., Cubic Rashba Effect in the Surface Spin Structure of Rare-Earth Ternary Materials, Phys. Rev. Lett. 124, 237202 (2020). [93]G. Dresselhaus, Spin-Orbit Coupling Effects in Zinc Blende Structures, Phys. Rev. 100, 580 (1955). [94]E. I. Rashba, Symmetry of Energy Bands in Crystals of Wurtzite Type. I. Symmetry of Bands Disregarding Spin-Orbit Interaction, Soviet Physics, Solid State 1, 368 (1959). [95]D. Stein, K. V. Klitzing, and G. Weimann, Electron Spin Resonance on G a A s − Al x Ga 1 − x As Heterostructures, Phys. Rev. Lett. 51, 130 (1983). [96]P. D. C. King et al., Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas in Bi 2 Se 3, Phys. Rev. Lett. 107, 096802 (2011). [97]Y. Feng et al., Rashba-like Spin Splitting along Three Momentum Directions in Trigonal Layered PtBi2, Nat Commun 10, 4765 (2019). [98]W. Ju, D. Wang, T. Li, Y. Zhang, Z. Gao, L. Ren, H. Li, and S. Gong, Remarkable Rashba Spin Splitting Induced by an Asymmetrical Internal Electric Field in Polar III–VI Chalcogenides, Phys. Chem. Chem. Phys. 22, 9148 (2020). [99]K. Lee, W. S. Yun, and J. D. Lee, Giant Rashba-Type Splitting in Molybdenum-Driven Bands of MoS 2 / Bi ( 111 ) Heterostructure, Phys. Rev. B 91, 125420 (2015). [100]J. M. Richter, K. Chen, A. Sadhanala, J. Butkus, J. P. H. Rivett, R. H. Friend, B. Monserrat, J. M. Hodgkiss, and F. Deschler, Direct Bandgap Behavior in Rashba‐Type Metal Halide Perovskites, Advanced Materials 30, 1803379 (2018). [101]S.-C. Hsieh, C.-H. Hsu, H.-D. Chen, D.-S. Lin, F.-C. Chuang, and P.-J. Hsu, Extended α-Phase Bi Atomic Layer on Si(1 1 1) Fabricated by Thermal Desorption, Applied Surface Science 504, 144103 (2020). [102]I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Current-Driven Spin Torque Induced by the Rashba Effect in a Ferromagnetic Metal Layer, Nature Mater 9, 230 (2010). [103]F. Li, W. Wei, H. Wang, B. Huang, Y. Dai, and T. Jacob, Intrinsic Electric Field-Induced Properties in Janus MoSSe van Der Waals Structures, J. Phys. Chem. Lett. 10, 559 (2019). [104]C. Yu and Z. Wang, Strain Engineering and Electric Field Tunable Electronic Properties of Janus MoSSe/WX 2 (X = S, Se) van Der Waals Heterostructures, Physica Status Solidi (b) 256, 1900261 (2019). [105]H. T. T. Nguyen, V. V. Tuan, C. V. Nguyen, H. V. Phuc, H. D. Tong, S.-T. Nguyen, and N. N. Hieu, Electronic and Optical Properties of a Janus SnSSe Monolayer: Effects of Strain and Electric Field, Phys. Chem. Chem. Phys. 22, 11637 (2020). [106]Z. Zhu, H. Zheng, and J. Jia, Majorana Zero Mode in the Vortex of Artificial Topological Superconductor, Journal of Applied Physics 129, 151104 (2021). [107]A. Banerjee, S. Chakraborty, and R. Ahuja, Rashba Triggered Electronic and Optical Properties Tuning in Mixed Cation–Mixed Halide Hybrid Perovskites, ACS Appl. Energy Mater. 2, 6990 (2019). [108]S. E. Barnes, J. Ieda, and S. Maekawa, Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism, Sci Rep 4, 4105 (2014). [109]D. Zhang, S. Hu, X. Liu, Y. Chen, Y. Xia, H. Wang, H. Wang, and Y. Ni, Solar Cells Based on Two-Dimensional WTe 2 /PtXY (X, Y = S, Se) Heterostructures with High Photoelectric Conversion Efficiency and Low Power Consumption, ACS Appl. Energy Mater. 4, 357 (2021). [110]Z. Kahraman, A. Kandemir, M. Yagmurcukardes, and H. Sahin, Single-Layer Janus-Type Platinum Dichalcogenides and Their Heterostructures, J. Phys. Chem. C 123, 4549 (2019). [111]D. D. Vo et al., Janus Monolayer PtSSe under External Electric Field and Strain: A First Principles Study on Electronic Structure and Optical Properties, Superlattices and Microstructures 147, 106683 (2020). [112]X. Zhao, W. Niu, Q. Zhao, H. Zhang, C. Xia, T. Wang, X. Dai, and S. Wei, Electronic Properties of XPtY-Graphene (X/Y = S, Se and Te) Contacts, Physica E: Low-Dimensional Systems and Nanostructures 124, 114311 (2020). [113]W.-L. Tao, J.-Q. Lan, C.-E. Hu, Y. Cheng, J. Zhu, and H.-Y. Geng, Thermoelectric Properties of Janus MXY (M = Pd, Pt; X, Y = S, Se, Te) Transition-Metal Dichalcogenide Monolayers from First Principles, Journal of Applied Physics 127, 035101 (2020). [114]G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B 54, 11169 (1996). [115]J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996). [116]J. D. Pack and H. J. Monkhorst, “Special Points for Brillouin-Zone Integrations”—a Reply, Phys. Rev. B 16, 1748 (1977). [117]A. Togo and I. Tanaka, First Principles Phonon Calculations in Materials Science, Scripta Materialia 108, 1 (2015). [118]J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid Functionals Based on a Screened Coulomb Potential, The Journal of Chemical Physics 118, 8207 (2003). [119]J. Sun et al., Accurate First-Principles Structures and Energies of Diversely Bonded Systems from an Efficient Density Functional, Nature Chem 8, 831 (2016). [120]D. Zhao, S. Xie, Y. Wang, H. Zhu, L. Chen, Q. Sun, and D. W. Zhang, Synthesis of Large-Scale Few-Layer PtS2 Films by Chemical Vapor Deposition, AIP Advances 9, 025225 (2019). [121]Y. Wang et al., Monolayer PtSe 2 , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt, Nano Lett. 15, 4013 (2015). [122]G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba Effect, New J. Phys. 17, 050202 (2015). [123]Y. A. Bychkov and E. I. Rashba, Properties of a 2D Electron Gas with Lifted Spectral Degeneracy, JETP Letters 39, 66 (1984). [124]T. Etienne, E. Mosconi, and F. De Angelis, Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?, J. Phys. Chem. Lett. 7, 1638 (2016). [125]Q.-F. Yao, J. Cai, W.-Y. Tong, S.-J. Gong, J.-Q. Wang, X. Wan, C.-G. Duan, and J. H. Chu, Manipulation of the Large Rashba Spin Splitting in Polar Two-Dimensional Transition-Metal Dichalcogenides, Phys. Rev. B 95, 165401 (2017). [126]W. Zhou, J. Chen, Z. Yang, J. Liu, and F. Ouyang, Geometry and Electronic Structure of Monolayer, Bilayer, and Multilayer Janus WSSe, Phys. Rev. B 99, 075160 (2019). [127]L. L. Tao and E. Y. Tsymbal, Perspectives of Spin-Textured Ferroelectrics, J. Phys. D: Appl. Phys. 54, 113001 (2021). [128]Y. Feng et al., Rashba-like Spin Splitting along Three Momentum Directions in Trigonal Layered PtBi2, Nat Commun 10, 4765 (2019). [129]S. D. Ganichev and L. E. Golub, Interplay of Rashba/Dresselhaus Spin Splittings Probed by Photogalvanic Spectroscopy –A Review, Physica Status Solidi (b) 251, 1801 (2014). [130]M. Kawano, Y. Onose, and C. Hotta, Designing Rashba–Dresselhaus Effect in Magnetic Insulators, Commun Phys 2, 27 (2019). [131]J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C. Zhang, S. Mack, and D. D. Awschalom, Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells, Nature 458, 610 (2009). [132]M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis, Direct Mapping of the Formation of a Persistent Spin Helix, Nature Phys 8, 757 (2012). [133]M. Griesbeck, M. M. Glazov, E. Ya. Sherman, D. Schuh, W. Wegscheider, C. Schüller, and T. Korn, Strongly Anisotropic Spin Relaxation Revealed by Resonant Spin Amplification in (110) GaAs Quantum Wells, Phys. Rev. B 85, 085313 (2012). [134]H. Q. Ye et al., Growth Direction Dependence of the Electron Spin Dynamics in {111} GaAs Quantum Wells, Applied Physics Letters 101, 032104 (2012). [135]J. Schliemann, J. C. Egues, and D. Loss, Nonballistic Spin-Field-Effect Transistor, Phys. Rev. Lett. 90, 146801 (2003). [136]K. C. Hall, W. H. Lau, K. Gündoğdu, M. E. Flatté, and T. F. Boggess, Nonmagnetic Semiconductor Spin Transistor, Applied Physics Letters 83, 2937 (2003). [137]Y. Kunihashi, M. Kohda, H. Sanada, H. Gotoh, T. Sogawa, and J. Nitta, Proposal of Spin Complementary Field Effect Transistor, Appl. Phys. Lett. 100, 113502 (2012). [138]L. Pedesseau, M. Kepenekian, R. Robles, D. Sapori, C. Katan, and J. Even, Theoretical Studies of Rashba and Dresselhaus Effects in Hybrid Organic-Inorganic Perovskites for Optoelectronic Applications, in edited by B. Witzigmann, M. Osiński, and Y. Arakawa (San Francisco, California, United States, 2016), p. 97421B. [139]S. Singh and A. H. Romero, Giant Tunable Rashba Spin Splitting in a Two-Dimensional BiSb Monolayer and in BiSb/AlN Heterostructures, Phys. Rev. B 95, 165444 (2017). [140]M. Chen and F. Liu, Prediction of Giant and Ideal Rashba-Type Splitting in Ordered Alloy Monolayers Grown on a Polar Surface, National Science Review 8, nwaa241 (2021). [141]P. Albert L. Sino et al., Controllable Structure-Engineered Janus and Alloy Polymorphic Monolayer Transition Metal Dichalcogenides by Plasma-Assisted Selenization Process toward High-Yield and Wafer-Scale Production, Materials Today 69, 97 (2023). [142]Z.-K. Tang, B. Wen, M. Chen, and L.-M. Liu, Janus MoSSe Nanotubes: Tunable Band Gap and Excellent Optical Properties for Surface Photocatalysis, Adv. Theory Simul. 1, 1800082 (2018). [143]C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, and J. Li, Universality of Electronic Characteristics and Photocatalyst Applications in the Two-Dimensional Janus Transition Metal Dichalcogenides, Phys. Rev. B 98, 165424 (2018). [144]L. Ju, M. Bie, X. Tang, J. Shang, and L. Kou, Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting, ACS Appl. Mater. Interfaces acsami.0c06149 (2020). [145]M. Idrees, H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, I. Ahmad, and B. Amin, Optoelectronic and Solar Cell Applications of Janus Monolayers and Their van Der Waals Heterostructures, Phys. Chem. Chem. Phys. 21, 18612 (2019). [146]C. Luo, X. Peng, J. Qu, and J. Zhong, Valley Degree of Freedom in Ferromagnetic Janus Monolayer H-VSSe and the Asymmetry-Based Tuning of the Valleytronic Properties, Phys. Rev. B 101, 245416 (2020). [147]J. He and S. Li, Two-Dimensional Janus Transition-Metal Dichalcogenides with Intrinsic Ferromagnetism and Half-Metallicity, Computational Materials Science 152, 151 (2018). [148]C. Zhang, Y. Nie, S. Sanvito, and A. Du, First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization, Nano Lett. 19, 1366 (2019). [149]R. Peng, Y. Ma, S. Zhang, B. Huang, and Y. Dai, Valley Polarization in Janus Single-Layer MoSSe via Magnetic Doping, J. Phys. Chem. Lett. 9, 3612 (2018). [150]R. Peng, Y. Ma, B. Huang, and Y. Dai, Two-Dimensional Janus PtSSe for Photocatalytic Water Splitting under the Visible or Infrared Light, J. Mater. Chem. A 7, 603 (2019). [151]L. You, Y. Wang, and K. Zhou, 2D Pentagonal Pd‐Based Janus Transition Metal Dichalcogenides for Photocatalytic Water Splitting, Physica Rapid Research Ltrs 16, 2100344 (2022). [152]C.-H. Yeh, Computational Study of Janus Transition Metal Dichalcogenide Monolayers for Acetone Gas Sensing, ACS Omega 5, 31398 (2020). [153]C. Jin, X. Tang, X. Tan, S. C. Smith, Y. Dai, and L. Kou, A Janus MoSSe Monolayer: A Superior and Strain-Sensitive Gas Sensing Material, J. Mater. Chem. A 7, 1099 (2019). [154]Q. Wu, L. Cao, Y. S. Ang, and L. K. Ang, Superior and Tunable Gas Sensing Properties of Janus PtSSe Monolayer, Nano Ex. 1, 010042 (2020). [155]D. Wang et al., Janus MoSSe Monolayer: A Highly Strain-Sensitive Gas Sensing Material to Detect SF6 Decompositions, Sensors and Actuators A: Physical 311, 112049 (2020). [156]S. Pal Kaur, T. Hussain, and T. J. Dhilip Kumar, Substituted 2D Janus WSSe Monolayers as Efficient Nanosensor toward Toxic Gases, Journal of Applied Physics 130, 014501 (2021). [157]C.-H. Yeh, Y.-T. Chen, and D.-W. Hsieh, Effects of External Electric Field on the Sensing Property of Volatile Organic Compounds over Janus MoSSe Monolayer: A First-Principles Investigation, RSC Adv. 11, 33276 (2021). [158]J. Lian, W. Huang, W. Hu, and G. Huang, Electrostatic Potential Anomaly in 2D Janus Transition Metal Dichalcogenides, ANNALEN DER PHYSIK 531, 1900369 (2019). [159]S. Tao, B. Xu, J. Shi, S. Zhong, X. Lei, G. Liu, and M. Wu, Tunable Dipole Moment in Janus Single-Layer MoSSe via Transition-Metal Atom Adsorption, J. Phys. Chem. C 123, 9059 (2019). [160]A. C. Riis-Jensen, M. Pandey, and K. S. Thygesen, Efficient Charge Separation in 2D Janus van Der Waals Structures with Built-in Electric Fields and Intrinsic p–n Doping, J. Phys. Chem. C 122, 24520 (2018). [161]S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang, T. Zhai, V. B. Shenoy, and J. Lou, Biomolecular Sensing by Surface-Enhanced Raman Scattering of Monolayer Janus Transition Metal Dichalcogenide, Nanoscale 12, 10723 (2020). [162]R. Ahammed, N. Jena, A. Rawat, M. K. Mohanta, Dimple, and A. De Sarkar, Ultrahigh Out-of-Plane Piezoelectricity Meets Giant Rashba Effect in 2D Janus Monolayers and Bilayers of Group IV Transition-Metal Trichalcogenides, J. Phys. Chem. C 124, 21250 (2020). [163]L. Zhang, Y. Xia, X. Li, L. Li, X. Fu, J. Cheng, and R. Pan, Janus Two-Dimensional Transition Metal Dichalcogenides, Journal of Applied Physics 131, 230902 (2022). [164]Z. Gan et al., Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides, Advanced Materials 2205226 (2022). [165]M. M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J. J. Finley, A. R. Botello-Méndez, and K. Müller, Raman Spectrum of Janus Transition Metal Dichalcogenide Monolayers WSSe and MoSSe, Phys. Rev. B 103, 035414 (2021). [166]Y. Qin et al., Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth, Advanced Materials 34, 2106222 (2022). [167]J. Meng, T. Wang, Z. He, Q. Li, H. Zhu, L. Ji, L. Chen, Q. Sun, and D. W. Zhang, A High-Speed 2D Optoelectronic in-Memory Computing Device with 6-Bit Storage and Pattern Recognition Capabilities, Nano Res. 15, 2472 (2022). [168]F. Güell, P. R. Martínez-Alanis, S. Khachadorian, J. Rubio-García, A. Franke, A. Hoffmann, and G. Santana, Raman and Photoluminescence Properties of ZnO Nanowires Grown by a Catalyst-Free Vapor-Transport Process Using ZnO Nanoparticle Seeds: Raman and PL Properties of ZnO Nanowires Grown by Vapor-Transport Process, Phys. Status Solidi B 253, 883 (2016). [169]Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang, Z. Wang, and M. Dong, Emerging MoS2 Wafer-Scale Technique for Integrated Circuits, Nano-Micro Lett. 15, 38 (2023). [170]T.-N. Lam et al., Tuning Mechanical Properties of Electrospun Piezoelectric Nanofibers by Heat Treatment, Materialia 8, 100461 (2019). [171]H.-C. Lee, Review of Inductively Coupled Plasmas: Nano-Applications and Bistable Hysteresis Physics, Applied Physics Reviews 5, 011108 (2018). [172]R. N. Jenjeti, R. Kumar, A. Sellam, and S. Sampath, High Stability of 1T-Phase MoS 2 x Se 2(1– x ) Monolayers Under Ambient Conditions, J. Phys. Chem. C 125, 8407 (2021). [173]A. S. Oreshonkov, E. V. Sukhanova, and Z. I. Popov, Raman Spectroscopy of Janus MoSSe Monolayer Polymorph Modifications Using Density Functional Theory, Materials 15, 3988 (2022). [174]Z. Lin et al., Facile Preparation of 1T/2H‐Mo(S 1‐x Se x ) 2 Nanoparticles for Boosting Hydrogen Evolution Reaction, ChemCatChem 11, 2217 (2019). [175]K.-G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu, and C. Casiraghi, Raman Modes of MoS 2 Used as Fingerprint of van Der Waals Interactions in 2-D Crystal-Based Heterostructures, ACS Nano 8, 9914 (2014). [176]H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Adv. Funct. Mater. 22, 1385 (2012). [177]Z. Kou, A. Hashemi, M. J. Puska, A. V. Krasheninnikov, and H.-P. Komsa, Simulating Raman Spectra by Combining First-Principles and Empirical Potential Approaches with Application to Defective MoS2, Npj Comput Mater 6, 59 (2020). [178]Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang, J. Zhang, and L. Xie, Growth of MoS 2(1– x ) Se 2 x ( x = 0.41–1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition, ACS Nano 9, 7450 (2015). [179]X. Duan et al., Synthesis of WS 2 x Se 2–2 x Alloy Nanosheets with Composition-Tunable Electronic Properties, Nano Lett. 16, 264 (2016). [180]S. J. Yun, G. H. Han, H. Kim, D. L. Duong, B. G. Shin, J. Zhao, Q. A. Vu, J. Lee, S. M. Lee, and Y. H. Lee, Telluriding Monolayer MoS2 and WS2 via Alkali Metal Scooter, Nat Commun 8, 2163 (2017). [181]A. Lu et al., Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS 2 through Machine‐Learning Models, Advanced Materials 34, 2202911 (2022). [182]R. Yang, L. Mei, Q. Zhang, Y. Fan, H. S. Shin, D. Voiry, and Z. Zeng, High-Yield Production of Mono- or Few-Layer Transition Metal Dichalcogenide Nanosheets by an Electrochemical Lithium Ion Intercalation-Based Exfoliation Method, Nat Protoc 17, 358 (2022). [183]Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication, Angew. Chem. Int. Ed. 50, 11093 (2011). [184]L. Tang, T. Li, Y. Luo, S. Feng, Z. Cai, H. Zhang, B. Liu, and H.-M. Cheng, Vertical Chemical Vapor Deposition Growth of Highly Uniform 2D Transition Metal Dichalcogenides, ACS Nano 14, 4646 (2020). [185]X. Zhao, S. Ning, W. Fu, S. J. Pennycook, and K. P. Loh, Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy, Adv. Mater. 30, 1802397 (2018). [186]J. H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer, and J. Osterwalder, Rashba-Type Spin-Orbit Splitting of Quantum Well States in Ultrathin Pb Films, Phys. Rev. Lett. 101, 266802 (2008). |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |