論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-01-08
校外 Off-campus:開放下載的時間 available 2027-01-08
論文名稱 Title |
使用資料視覺化以提升電影推薦系統的可解釋性 Using Data Visualization to Improve the Explainability of Movie Recommendation System |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
91 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-12-28 |
繳交日期 Date of Submission |
2024-01-08 |
關鍵字 Keywords |
資料視覺化、可解釋人工智能、視覺解釋方法、推薦系統、人機互動 data visualization, explainable AI, visual explanation, recommendation system, human-computer interaction |
||
統計 Statistics |
本論文已被瀏覽 195 次,被下載 0 次 The thesis/dissertation has been browsed 195 times, has been downloaded 0 times. |
中文摘要 |
近年來,隨著電子商務涉及領域的拓展趨勢下,人類的生活型態與消費方式已逐漸改變。 推薦系統作為線上電影串流服務的核心技術,用於為使用者提供個人化的電影推薦,也隨之受到了領域內的廣泛討論。 在當前消費者對於隱私權愈趨重視的趨勢下,可解釋推薦系統能夠提供高品質推薦同時提供易於消費者理解的推薦解釋已成為產業界與學術界的研究熱點。 其中的推薦解釋方法要解決的問題是推薦系統的可解釋性,讓一般民眾能夠理解為什麼系統會將某個特定的產品推薦給消費者。 本文提出了一種用於商用電影推薦系統的視覺解釋方法,此方法專注於開發一套專門為一般民眾所設計的視覺可解釋推薦系統。 |
Abstract |
In recent years, e-commerce has gradually changed the way of life of human beings, with online movie streaming services emerging as one of the applications most intimately connected to our daily lives within the e-commerce domain. These services employ recommendation systems that utilize personal data, such as gender, age, location, and browsing history to provide users with personalized movie recommendations. However, the utilization of personal data in these systems has led to privacy concerns among customers. To alleviate this problem, we proposed a visual explanation method for an e-commerce movie recommendation system. Our research aims to design a visualization-based explanation method to show what user data are used in movie recommendations. This method not only enhances transparency but also reinforces user trust in the recommendation systems. Through a system evaluation, we demonstrate how our visualization design aids users in understanding the use of their data in the recommendation system, ultimately fostering a more trusting relationship with the system. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables ix CHAPTER 1 Introduction 1 CHAPTER 2 Related Work 7 2.1 Recommendation Systems 7 2.2 Explainable Artificial Intelligence 11 2.3 Explanations in Recommendation System 12 2.3.1 Non-visual Explanations 15 2.3.2 Visual Explanations 16 CHAPTER 3 System Design 22 3.1 User Requirements 22 3.2 Visualization Explanations Design 23 3.2.1 Movie Quick Review Section 28 3.2.2 Profile Characteristics Visualization Section 29 3.2.3 Preferred Movies Characteristics Visualization Section 31 3.3 System Design 33 3.3.1 Personalized Recommendation 33 3.3.2 Visual Explanations 34 3.4 Usage Scenario 35 CHAPTER 4 System Evaluation 40 4.1 Method 40 4.1.1 Participants 40 4.1.2 Study Design 41 4.1.3 Measurements 46 4.1.4 Study Procedure 50 4.2 Results 52 4.2.1 Explainability Assessment: Response Accuracy and Confidence 53 4.2.2 Explainability Assessment: Clarity and Sufficiency of Explanation 59 4.2.3 Trust Scale 61 4.2.4 System Usability Scale (SUS) 64 CHAPTER 5 Discussion 66 5.1 Potential to Meeting User Requirements 66 5.2 Limitations and Future Work 68 CHAPTER 6 Conclusion 71 CHAPTER 7 References 74 |
參考文獻 References |
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052 Adomavicius, G., knowledge, A. T.-I. transactions on, & 2005, undefined. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Ieeexplore.Ieee.Org. https://ieeexplore.ieee.org/abstract/document/1423975/ Alkis, A., & Kose, T. (2022). Privacy concerns in consumer E-commerce activities and response to social media advertising: Empirical evidence from Europe. Computers in Human Behavior, 137, 107412. https://doi.org/10.1016/J.CHB.2022.107412 Alshammari, M., Nasraoui, O., & Sanders, S. (2019a). Mining Semantic Knowledge Graphs to Add Explainability to Black Box Recommender Systems. IEEE Access, 7, 110563–110579. https://doi.org/10.1109/ACCESS.2019.2934633 Alshammari, M., Nasraoui, O., & Sanders, S. (2019b). Mining Semantic Knowledge Graphs to Add Explainability to Black Box Recommender Systems. IEEE Access, 7, 110563–110579. https://doi.org/10.1109/ACCESS.2019.2934633 Amin, S. A., Philips, J., & Tabrizi, N. (2019). Current trends in collaborative filtering recommendation systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11517 LNCS, 46–60. https://doi.org/10.1007/978-3-030-23381-5_4/COVER Andjelkovic, I., Parra, D., & O’Donovan, J. (2019). Moodplay: Interactive music recommendation based on Artists’ mood similarity. International Journal of Human-Computer Studies, 121, 142–159. https://doi.org/10.1016/J.IJHCS.2018.04.004 Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., & Xia, F. (2019). Scientific paper recommendation: A survey. IEEE Access, 7, 9324–9339. https://doi.org/10.1109/ACCESS.2018.2890388 Bakalov, F., Meurs, M. J., König-Ries, B., Sateli, B., Witte, R., Butler, G., & Tsang, A. (2013). An approach to controlling user models and personalization effects in recommender systems. International Conference on Intelligent User Interfaces, Proceedings IUI, 49–56. https://doi.org/10.1145/2449396.2449405 Bashir, S., Khwaja, M. G., Mahmood, A., Turi, J. A., & Latif, K. F. (2021). Refining e-shoppers’ perceived risks: Development and validation of new measurement scale. Journal of Retailing and Consumer Services, 58, 102285. https://doi.org/10.1016/J.JRETCONSER.2020.102285 Bostandjiev, S. A., O’Donovan, J., & Höllerer, T. (2013). LinkedVis: Exploring social and semantic career recommendations. International Conference on Intelligent User Interfaces, Proceedings IUI, 107–115. https://doi.org/10.1145/2449396.2449412 Bostandjiev, S., O’Donovan, J., & Höllerer, T. (2012a). Tasteweights: A visual interactive hybrid recommender system. RecSys’12 - Proceedings of the 6th ACM Conference on Recommender Systems, 35–42. https://doi.org/10.1145/2365952.2365964 Bostandjiev, S., O’Donovan, J., & Höllerer, T. (2012b). Tasteweights: A visual interactive hybrid recommender system. RecSys’12 - Proceedings of the 6th ACM Conference on Recommender Systems, 35–42. https://doi.org/10.1145/2365952.2365964 Brooke, J. (1996). SUS-A quick and dirty usability scale. www.TBIStaffTraining.info Burke, R. (2007). Hybrid web recommender systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4321 LNCS, 377–408. https://doi.org/10.1007/978-3-540-72079-9_12/COVER Chatti, M. A., Guesmi, M., & Muslim, A. (2023). Visualization for Recommendation Explainability: A Survey and New Perspectives. Journal of the ACM, 37(111), 36. https://doi.org/10.1145/1122445.1122456 Chen, J., Wang, B., Liji, U., its, Z. O.-P. A. S. M. and, & 2019, undefined. (2019). Personal recommender system based on user interest community in social network model. Elsevier. https://www.sciencedirect.com/science/article/pii/S037843711930559X?casa_token=XZzRrFtxupcAAAAA:Uc2rozKH6NeJZ9bsQsW_Q-wpjdf5Ybco9cDZjYNdwJortUVjSauqXeCq7iKYU6ozQrDu26Gr7Q Chen, R., Yang, L., Goodison, S., & Sun, Y. (2020). Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics, 36(5), 1476–1483. https://doi.org/10.1093/BIOINFORMATICS/BTZ769 Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., & Zha, H. (2018). Sequential recommendation with user memory networks. Dl.Acm.OrgX Chen, H Xu, Y Zhang, J Tang, Y Cao, Z Qin, H ZhaProceedings of the Eleventh ACM International Conference on Web Search and, 2018•dl.Acm.Org, 2018-Febuary, 108–116. https://doi.org/10.1145/3159652.3159668 Chen, Y., Wu, C., Xie, M., & Guo, X. (2011). Solving the Sparsity Problem in Recommender Systems Using Association Retrieval. https://doi.org/10.4304/jcp.6.9.1896-1902 Dominguez, V., Donoso-Guzmán, I., Messina, P., & Parra, D. (2019). The effect of explanations and algorithmic accuracy on visual recommender systems of artistic images. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F147615, 408–416. https://doi.org/10.1145/3301275.3302274 Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., & Zhang, F. (2017). A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), 1309–1315. https://doi.org/10.1609/AAAI.V31I1.10747 Du, F., Plaisant, C., Spring, N., & Shneiderman, B. (2018a). Visual Interfaces for Recommendation Systems. ACM Transactions on Intelligent Systems and Technology (TIST), 10(1). https://doi.org/10.1145/3200490 Du, F., Plaisant, C., Spring, N., & Shneiderman, B. (2018b). Visual Interfaces for Recommendation Systems. ACM Transactions on Intelligent Systems and Technology (TIST), 10(1). https://doi.org/10.1145/3200490 Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative Filtering Recommender Systems. Foundations and Trends® in Human–Computer Interaction, 4(2), 81–173. https://doi.org/10.1561/1100000009 Francesco Ricci, Lior Rokach, & Bracha Shapira. (2022). Recommender Systems Handbook. Recommender Systems Handbook. https://doi.org/10.1007/978-1-0716-2197-4 Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 37(3), 362–386. https://doi.org/10.1002/ROB.21918 Hamilton, R. I., & Papadopoulos, P. N. (2023). Using SHAP Values and Machine Learning to Understand Trends in the Transient Stability Limit. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2023.3248941 Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5, 4, Article, 19. https://doi.org/10.1145/2827872 Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14(1), 1–24. https://doi.org/10.1186/S11782-020-00082-6/TABLES/6 Hwangbo, H., Kim, Y. S., & Cha, K. J. (2018a). Recommendation system development for fashion retail e-commerce. Electronic Commerce Research and Applications, 28, 94–101. https://doi.org/10.1016/J.ELERAP.2018.01.012 Hwangbo, H., Kim, Y. S., & Cha, K. J. (2018b). Recommendation system development for fashion retail e-commerce. Electronic Commerce Research and Applications, 28, 94–101. https://doi.org/10.1016/J.ELERAP.2018.01.012 Jarvenpaa, S. L., Tractinsky, N., Saarinen, L., & Vitale, M. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2), 0–0. https://doi.org/10.1111/J.1083-6101.1999.TB00337.X Jin, Y., Tintarev, N., & Verbert, K. (2018). Effects of individual traits on diversity-aware music recommender user interfaces. UMAP 2018 - Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, 291–299. https://doi.org/10.1145/3209219.3209225 Khatter, H., Arif, S., Singh, U., Mathur, S., & Jain, S. (2021). Product Recommendation System for E-Commerce using Collaborative Filtering and Textual Clustering. Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, 612–618. https://doi.org/10.1109/ICIRCA51532.2021.9544753 Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields. Electronics 2022, Vol. 11, Page 141, 11(1), 141. https://doi.org/10.3390/ELECTRONICS11010141 Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., & Getoor, L. (2019). Personalized explanations for hybrid recommender systems. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F147615, 379–390. https://doi.org/10.1145/3301275.3302306 Kunaver, M., & Požrl, T. (2017). Diversity in recommender systems – A survey. Knowledge-Based Systems, 123, 154–162. https://doi.org/10.1016/J.KNOSYS.2017.02.009 Kutur, R., Gandhi, R., Ravikanth, K., Chandrashekar, K., Sreekanth, K., & Santhosh Kumar, P. (2021). Recommendation system for e-commerce by memory based and model based collaborative filtering. Springer, 1182 AISC, 123–129. https://doi.org/10.1007/978-3-030-49345-5_13 Lee, S. K., Ho Cho, Y., & Kim, S. H. (2010). Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Information Sciences, 180, 2142–2155. https://doi.org/10.1016/j.ins.2010.02.004 Lops, P., Jannach, D., Cataldo Musto, ·, Bogers, · Toine, & Koolen, M. (2019). Trends in content-based recommendation Preface to the special issue on Recommender systems based on rich item descriptions. User Modeling and User-Adapted Interaction, 29, 239–249. https://doi.org/10.1007/s11257-019-09231-w Lu, Y., Dong, R., & Smyth, B. (2018). Coevolutionary recommendation model: Mutual learning between ratings and reviews. The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018, 773–782. https://doi.org/10.1145/3178876.3186158 Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 30. https://github.com/slundberg/shap Ma, B., Lu, M., Taniguchi, Y., & Konomi, S. (2021). CourseQ: the impact of visual and interactive course recommendation in university environments. Research and Practice in Technology Enhanced Learning, 16(1), 1–24. https://doi.org/10.1186/S41039-021-00167-7/FIGURES/10 Millecamp, M., Conati, C., Htun, N. N., & Verbert, K. (2019a). To explain or not to explain: The effects of personal characteristics when explaining music recommendations. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F147615, 397–407. https://doi.org/10.1145/3301275.3302313 Millecamp, M., Conati, C., Htun, N. N., & Verbert, K. (2019b). To explain or not to explain: The effects of personal characteristics when explaining music recommendations. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F147615, 397–407. https://doi.org/10.1145/3301275.3302313 Nassar, N., Jafar, A., & Rahhal, Y. (2020). A novel deep multi-criteria collaborative filtering model for recommendation system. Knowledge-Based Systems, 187, 104811. https://doi.org/10.1016/J.KNOSYS.2019.06.019 Nilashi, M., Jannach, D., Bin Ibrahim, O., Dalvi Esfahani, M., & Ahmadi, H. (2016). Recommendation quality, transparency, and website quality for trust-building in recommendation agents. Electronic Commerce Research and Applications, 19, 70–84. https://doi.org/10.1016/j.elerap.2016.09.003 O’Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., & Höllerer, T. (2008a). PeerChooser: Visual interactive recommendation. Conference on Human Factors in Computing Systems - Proceedings, 1085–1088. https://doi.org/10.1145/1357054.1357222 O’Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., & Höllerer, T. (2008b). PeerChooser: Visual interactive recommendation. Conference on Human Factors in Computing Systems - Proceedings, 1085–1088. https://doi.org/10.1145/1357054.1357222 Okazaki, S., Eisend, M., Plangger, K., de Ruyter, K., & Grewal, D. (2020). Understanding the Strategic Consequences of Customer Privacy Concerns: A Meta-Analytic Review. Journal of Retailing, 96(4), 458–473. https://doi.org/10.1016/J.JRETAI.2020.05.007 Park, H., Jeon, H., Kim, J., Ahn, B., & Kang, U. (2017). UniWalk: Explainable and Accurate Recommendation for Rating and Network Data. https://arxiv.org/abs/1710.07134v1 Park, J. H. (2019). Resource recommender system based on psychological user type indicator. Journal of Ambient Intelligence and Humanized Computing, 10(1), 27–39. https://doi.org/10.1007/S12652-017-0583-4 Parra, D., Brusilovsky, P., & Trattner, C. (2014). See what you want to see: Visual user-driven approach for hybrid recommendation. International Conference on Intelligent User Interfaces, Proceedings IUI, 235–240. https://doi.org/10.1145/2557500.2557542 Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4321 LNCS, 325–341. https://doi.org/10.1007/978-3-540-72079-9_10/COVER Reddy, S., Nalluri, S., Kunisetti, S., Ashok, S., & Venkatesh, B. (2019). Content-based movie recommendation system using genre correlation. Smart Innovation, Systems and Technologies, 105, 391–397. https://doi.org/10.1007/978-981-13-1927-3_42/COVER Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW 1994, 175–186. https://doi.org/10.1145/192844.192905 Resnick, P., & Varian, H. R. (1997). Recommender Systems. Communications of the ACM, 40(3), 56–58. https://doi.org/10.1145/245108.245121 Salton, Gerard., & McGill, M. J. (1983). Introduction to modern information retrieval. https://doi.org/10.3/JQUERY-UI.JS Schaffer, J., Hollerer, T., International, J. O.-T. T.-E., & 2015, undefined. (2015). Hypothetical recommendation: A study of interactive profile manipulation behavior for recommender systems. CiteseerJ Schaffer, T Hollerer, J O’DonovanThe Twenty-Eighth International Flairs Conference, 2015•Citeseer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dcfb7bf8b92583248d9605f9d4bef69c833b5eee Song, W., Duan, Z., Xu, Y., Shi, C., Zhang, M., Xiao, Z., & Tang, J. (2019). Autoint: Automatic feature interaction learning via self-attentive neural networks. International Conference on Information and Knowledge Management, Proceedings, 1161–1170. https://doi.org/10.1145/3357384.3357925 Spinner, T., Schlegel, U., Schäfer, H., Schäfer, S., & El-Assady, M. (2019). explAIner: A visual analytics framework for interactive and explainable machine learning. Ieeexplore.Ieee.Org. https://doi.org/10.1109/TVCG.2019.2934629 Suganeshwari, G., & Syed Ibrahim, S. P. (2016). A survey on collaborative filtering based recommendation system. Smart Innovation, Systems and Technologies, 49, 503–518. https://doi.org/10.1007/978-3-319-30348-2_42/TABLES/4 Tarus, J. K., Niu, Z., & Kalui, D. (2018). A hybrid recommender system for e-learning based on context awareness and sequential pattern mining. Soft Computing, 22(8), 2449–2461. https://doi.org/10.1007/S00500-017-2720-6 Tjoa, E., & Guan, C. (2021). A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 4793–4813. https://doi.org/10.1109/TNNLS.2020.3027314 Tsai, C. H., & Brusilovsky, P. (2019a). Explaining recommendations in an interactive hybrid social recommender. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F147615, 391–396. https://doi.org/10.1145/3301275.3302318 Tsai, C. H., & Brusilovsky, P. (2019b). Explaining recommendations in an interactive hybrid social recommender. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F147615, 391–396. https://doi.org/10.1145/3301275.3302318 Verbert, K., Parra, D., Brusilovsky, P., & Duval, E. (2013). Visualizing recommendations to support exploration, transparency and controllability. International Conference on Intelligent User Interfaces, Proceedings IUI, 351–362. https://doi.org/10.1145/2449396.2449442 Vig, J., Sen, S., & Riedl, J. (2009a). Tagsplanations: Explaining recommendations using tags. International Conference on Intelligent User Interfaces, Proceedings IUI, 47–56. https://doi.org/10.1145/1502650.1502661 Vig, J., Sen, S., & Riedl, J. (2009b). Tagsplanations: Explaining recommendations using tags. International Conference on Intelligent User Interfaces, Proceedings IUI, 47–56. https://doi.org/10.1145/1502650.1502661 Vlachos, M., on, D. S.-F. I. W., & 2012. (2012). Graph embeddings for movie visualization and recommendation. Researchgate.NetM Vlachos, D SvonavaFirst International Workshop on Recommendation Technologies for, 2012•researchgate.Net. https://www.researchgate.net/profile/Yu-Chen-309/publication/287905340_CoFeel_Using_emotions_for_social_interaction_in_group_recommender_systems/links/58d4c2c3a6fdcc1bae4d4419/CoFeel-Using-emotions-for-social-interaction-in-group-recommender-systems.pdf#page=56 Vultureanu-Albişi, A., & Bădică, C. (2021). Recommender Systems: An Explainable AI Perspective. 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). https://ieeexplore-ieee-org.ezproxy.lis.nsysu.edu.tw:8080/document/9548125/ Wang, C. D., Deng, Z. H., Lai, J. H., & Yu, P. S. (2019). Serendipitous recommendation in e-commerce using innovator-based collaborative filtering. IEEE Transactions on Cybernetics, 49(7), 2678–2692. https://doi.org/10.1109/TCYB.2018.2841924 Ware, C. (2019). Information visualization: perception for design. https://www.google.com/books?hl=zh-TW&lr=&id=3-HFDwAAQBAJ&oi=fnd&pg=PP1&dq=Colin+Ware.+2012.+Information+Visualization:+Perception+for+Design+(3+ed.).+Morgan+Kaufmann.&ots=o03iOvsiLd&sig=roKzZHjOXySTWKv8CYzZZnm3flk Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69, 29–39. https://doi.org/10.1016/J.ESWA.2016.09.040 Wu, Y., & Ester, M. (2015). FLAME:A Probabilistic model combining aspect based opinion mining and collaborative filtering. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining, 199–208. https://doi.org/10.1145/2684822.2685291 Zarzour, H., Al-Sharif, Z., Al-Ayyoub, M., & Jararweh, Y. (2018). A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques. 2018 9th International Conference on Information and Communication Systems, ICICS 2018, 2018-January, 102–106. https://doi.org/10.1109/IACS.2018.8355449 Zhang, J., Wang, Y., Yuan, Z., & Jin, Q. (2020). Personalized real-time movie recommendation system: Practical prototype and evaluation. Tsinghua Science and Technology, 25(2), 180–191. https://doi.org/10.26599/TST.2018.9010118 Zhang, Y., & Chen, X. (2020). Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1–101. https://doi.org/10.1561/1500000066 Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., & Ma, S. (2014, July). Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 83-92). Zhang, Y., Zhang, H., Zhang, M., Liu, Y., & Ma, S. (2014, July). Do users rate or review? Boost phrase-level sentiment labeling with review-level sentiment classification. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 1027-1030). Zheng, L., Noroozi, V., & Yu, P. S. (2017). Joint Deep Modeling of Users and Items Using Reviews for Recommendation. WSDM 2017 - Proceedings of the 10th ACM International Conference on Web Search and Data Mining, 425–433. https://doi.org/10.48550/arxiv.1701.04783 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-01-08 校外 Off-campus:開放下載的時間 available 2027-01-08 您的 IP(校外) 位址是 3.142.131.51 現在時間是 2024-11-21 論文校外開放下載的時間是 2027-01-08 Your IP address is 3.142.131.51 The current date is 2024-11-21 This thesis will be available to you on 2027-01-08. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-01-08 |
QR Code |