論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-01-10
校外 Off-campus:開放下載的時間 available 2027-01-10
論文名稱 Title |
氮化鎵高電子遷移率電晶體與鰭式場效電晶體電性及可靠度機制研究 Research on Electrical Characteristics and Reliability Mechanism of GaN High Electron Mobility Transistors and Fin-Field Effect Transistors |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
154 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-12-30 |
繳交日期 Date of Submission |
2024-01-10 |
關鍵字 Keywords |
氮化鎵高電子遷移率電晶體、關態漏電、汲極引發位能障降低、鰭式場效電晶體、熱電子效應 GaN HEMTs, Off-state Leakage, Drain Induced Barrier Lowering, FinFETs, Hot Electron Effect |
||
統計 Statistics |
本論文已被瀏覽 154 次,被下載 0 次 The thesis/dissertation has been browsed 154 times, has been downloaded 0 times. |
中文摘要 |
近年來,在各行業數位化和智慧型手機廣泛使用的推動下,對更高數據頻寬的需求不斷增加,推動了5G通訊的快速發展。 此外,環保意識的增強以及電動車需求的增加,導致市場對功率元件的需求不斷增長。 市場需求的這些變化引起了人們對氮化鎵(GaN)的極大關注。 由於GaN具有高電子遷移率、高熱穩定性以及高崩潰電壓的優點。GaN高電子遷移率電晶體(HEMTs)在高頻和高壓應用中備受期待。 然而,功率轉換系統的運作總是會產生熱量。 這會影響設備的其他部分,例如中央處理單元。而矽基鰭式場效電晶體(FinFETs)做為最廣泛應用於邏輯運算的元件,其可靠度劣化機制與環境溫度密切相關。因此,本論文主要從電學特性、可靠度測試和計算模擬方面來分析GaN HEMTs和矽基FinFETs的電性及可靠度問題。 於章節3中,本論文探討了p-GaN HEMTs的三階段關態漏電機制。藉由各端點漏電流貢獻、關態漏電重複量測實驗、低/高電壓關態應力測試及變溫關態應力測試以釐清各階段漏電機制。第一段到第三段分別由擊穿漏電、閘極電子注入以及缺陷輔助熱場發射等機制所主導。在釐清漏電機制之後,引入un-doped GaN (UGaN)厚度及製程溫度等變因並且為調整漏電特性的製程改進提供了可行的途徑。實驗結果顯示薄UGaN以及較低的製程溫度對於擊穿漏電的抑制效果最好。此外,厚UGaN能夠較好地抑制第三階段的產生電流。 於章節4中,本論文探討了在p-GaN HEMTs中低/高碳摻雜濃度緩衝層之間的異常飽和區電流趨勢。在飽和區下具有高碳摻雜濃度緩衝層的p-GaN HEMTs具有較高的電流。這一結果與碳摻雜會降低2DEG濃度的通常認知相違背。藉由變溫實驗以及飽和區應力測試釐清此異常趨勢背後的原因。這是由於低碳摻雜濃度緩衝層的p-GaN HEMTs中GaN層的能障較低。在飽和區條件下較容易於GaN層中發生熱電子注入進而影響電流特性。最後,碳摻雜濃度對能障的影響透過Silvaco TCAD模擬進行了驗證。 於章節5中,本論文探討了肖特基閘極GaN HEMTs 的Drain-induced barrier lowering (DIBL) 效應飽和現象。透過Silvaco TCAD模擬不同Vd的電場、能帶以及2DEG濃度,並藉此分析出DIBL 效應飽和現象是源自於T型閘極結構。T型閘極結構具有在大Vd下空乏額外的2DEG的能力。因此能夠在大Vd下分散本應集中於通道的電場,進而抑制DIBL效應。最後,從寄生電容的角度探討了抑制DIBL的能力與T型閘極的幾何間的關係。 於章節6中,本論文探討了60nm 和 14nm FinFET中溫度對於熱載子劣化機制的影響。藉由機制的擬合釐清不同電壓條件下的劣化機制。隨著Vg 的增加,HCS 劣化機制從電場相關性相對較高的Single Vibrational Excitation (SVE) 或Electron-Electron Scattering (EES) 轉變為電場相關性較低的Multiple Vibrational Excitation (MVE)機制。在60nm樣品中,由於聲子散射的影響,隨著溫度的升高,以SVE為主的部分轉變為EES機制。 由於溫度對於電子間散射的增幅。高溫下的 14nm 樣品,在更高的 Vg 從 EES 轉變為 MVE。最後,lifetime (τ) 和溫度之間的關係驗證了這個論點。 |
Abstract |
In recent years, the growing demand for higher data bandwidth, driven by digitalization across various industries and the widespread use of smartphones, has fueled the rapid development of 5G communication. Additionally, the increasing awareness of environmental concerns and the rising demand for electric vehicles have led to a continuous growth in the market's demand for power devices. These shifts in market demand have prompted significant attention toward Gallium Nitride (GaN). GaN is highly regarded for its advantages, including high electron mobility, excellent thermal stability, and a high breakdown voltage. Therefore, GaN High Electron Mobility Transistors (HEMTs) are particularly anticipated for high-frequency and high-voltage applications. However, power conversion systems always generate heat during operation, which can affect other components, such as central processing units. Silicon-based Fin Field-Effect Transistors (FinFETs), as the most widely used devices in logic operations, exhibit degradation mechanisms closely related to environmental temperature. Therefore, this dissertation primarily focuses on analyzing the electrical characteristics and reliability issues of GaN HEMTs and silicon-based FinFETs through electrical properties, reliability testing, and electrical simulations. In Chapter 3, this dissertation explores the three-stage leakage mechanisms in p-GaN HEMTs. Through the investigation of leakage current contributions at various endpoints, repeated experiments on leakage measurements, low/high voltage off-state stress tests, and temperature-dependent off-state stress tests, the mechanisms at each stage are clarified. These stages are primarily dominated by punch-through leakage, gate electron injection, and defect-assisted thermal field emission. Once the leakage mechanisms are elucidated, the introduction of variables like un-doped GaN (UGaN) thickness and process temperature provides a feasible pathway for adjusting leakage characteristics through process improvements. Experimental results ultimately reveal that a thin UGaN layer and lower process temperatures offer the more effective suppression of punch-through leakage. Conversely, a thick UGaN layer is more effective in curbing current generation. In Chapter 4, the dissertation examines the anomalous saturation current trends between p-GaN HEMTs with low and high carbon doping concentration buffer layers. The p-GaN HEMTs with high carbon doping concentration buffer layers exhibit higher current levels in the saturation region. This result contradicts the common understanding that carbon doping reduces 2DEG concentration. The reasons behind this anomalous trend are clarified through temperature experiments and saturation region stress tests. This anomaly is due to the lower energy barrier in the GaN layer of p-GaN HEMTs with low carbon doping concentration buffer layers. Under saturation region conditions, hot electron injection into the GaN layer occurs more easily, affecting current characteristics. Lastly, the impact of carbon doping concentration on the energy barrier is verified through Silvaco TCAD simulations. In Chapter 5, this dissertation investigates the Drain-Induced barrier lowering (DIBL) effect saturation phenomenon in Schottky-gate GaN HEMTs. Utilizing Silvaco TCAD simulations involving electric fields, energy band diagrams, and 2DEG concentrations at various drain voltage (Vd), the analysis reveals that the saturation of the DIBL effect is rooted in the T- gate structure. This gate structure has the ability to deplete additional 2DEG under large Vd, thus dispersing the electric field that would normally concentrate in the channel, consequently suppressing the DIBL effect. Finally, the thesis examines the relationship between the ability to suppress DIBL and the geometric aspect of the T-gate structure from the perspective of parasitic capacitance. In Chapter 6, this dissertation explores the influence of temperature on the degradation mechanisms in 60nm and 14nm FinFETs. Through fitting the mechanisms, the impact of different voltage conditions on degradation mechanisms is clarified. With increasing gate voltage (Vg), the Hot Carrier Stress (HCS) degradation mechanism transitions from Single Vibrational Excitation (SVE) or Electron-Electron Scattering (EES) mechanisms with relatively higher field dependence to the Multiple Vibrational Excitation (MVE) mechanism with lower field dependence. In the 60nm sample, due to the impact of phonon scattering, the part predominantly governed by SVE transitions to the EES mechanism as the temperature rises. In the 14nm sample at higher temperatures, under higher Vg, the transition shifts from EES to MVE. Finally, the relationship between lifetime (τ) and temperature validates this argument. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iv Abstract vii Contents xi Figure Captions xiii Table Captions xix Chapter 1 Introduction 1 1.1 Overview of GaN Material 1 1.2 Overview of GaN HEMTs 4 1.3 Overview of Moore’s Law 10 1.4 Overview of FinFETs 15 Chapter 2 Parametric Extraction and Instrument 18 2.1 Parameter Extraction 18 2.1.1 Threshold Voltage (Vth) 19 2.1.2 Subthreshold Swing (S.S.) 20 2.1.3 Carrier Mobility 22 2.2 Instrument 25 Chapter 3 Mechanism of Three Stage Off State Leakage on p-GaN HEMTs 28 3.1 Introduction 28 3.2 Experiment 30 3.3 Result and discussion 32 3.4 Conclusion 43 Chapter 4 Abnormal Tendency in Saturation Current between High Carbon Doped and Light Carbon Doped buffer in p-GaN HEMT 45 4.1 Introduction 45 4.2 Experiment 47 4.3 Result an disscussion 48 4.4 Conclusion 56 Chapter 5 Analysis and TCAD Simulation of Saturation Phenomenon of Drain-Induced Barrier Lowering Effect on Schottky-gate AlGaN/GaN HEMTs 57 5.1 Introduction 57 5.2 Experiment 61 5.3 Result and discussion 62 5.4 Conclusion 77 Chapter 6 Analysis of Hot Carrier Degradation of Short-channel FinFETs under Different Temperatures 78 6.1 Introduction 78 6.2 Experiment 82 6.3 Result and discussion 83 6.4 Conclusion 94 Chapter 7 Conclusion 95 Reference 100 |
參考文獻 References |
Chapter 1 [1] Adler, S Michael, et al., “The evolution of power device technology[J]”, IEEE Transactions on Electron Devices, vol. 31, no. 11, pp. 1570-1591, Nov. 1984, DOI: 10.1109/T-ED.1984.21754 [2] J. D. Albrecht, T. H. Chang, A. S. Kane, et al., “DARPA's Nitride Electronic Next Generation Technology Program[C]”, IEEE Compound Semiconductor Integrated Circuit Symposium., Nov. 2010, DOI: 10.1109/CSICS.2010.5619581 [3] O. Deblecker, Z. De Grève and C. Versèle, “Comparative Study of Optimally Designed DC-DC Converters with SiC and Si Power Devices”, Advanced Silicon Carbide Devices and Processing, Rijeka, Croatia, pp. 143-173, Sep. 2015, DOI: 10.5772/61018 [4] H. Okumura, “Present Status and Future Prospect of Widegap Semiconductor High-Power Devices[J]”, Japanese Journal of Applied Physics, vol. 45, no. 10R, p.7565, Oct. 2006, DOI: 10.1143/JJAP.45.7565 [5] S. Raeker, ” DigiKey 提供的電源 GaN 產品和資源”, Digikey, https://www.digikey.tw/zh/blog/power-gan-products-and-resources-available-at-digi-key-electronics, Jun. 2019 (accessed Nov. 2023) [6] O. Ambacher, J. Smart, J. R. Shealy, et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics”, vol. 85, no. 6, pp. 3222-3233, Mar. 1999, DOI: 10.1063/1.369664 [7] E. T. Yu, X. Z. Dang, P. M. Asbeck and S. S. Lau, “Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures” Journal of Vacuum Science & Technology B, vol. 17, no. 4, p. 1742, Jul. 1999, DOI: 10.1201/9780367813628-4 [8] Z. Wang, et al. "A closed-form charge control model for the threshold voltage of depletion-and enhancement-mode AlGaN/GaN devices", IEEE Transactions on Electron Devices, vol. 60, no.5, pp. 1607-1612, Mar. 2013, DOI: 10.1109/TED.2013.2252466 [9] X. Li, W. Zhang, M. Fu, J. Zhang, H. Jiang, Z. Guo, Y. Zou, R. Jiang, Z. Shi and Y. Hao, “AlGaN channel MIS-HEMTs with a very high breakdown electric field and excellent high-temperature performance”, IEICE Electronics Express, vol. 12, no. 20, pp. 20150694-20150694, Sep. 2015, DOI: 10.1587/elex.12.20150694 [10] A. S. Augustine Fletcher and D. Nirmal, “A survey of Gallium Nitride HEMT for RF and high power applications”, Superlattices and Microstructures, vol 109, Sep. 2017, DOI: 10.1016/j.spmi.2017.05.042 [11] K. Husna Hamza and D. Nirmal, “A review of GaN HEMT broadband power amplifiers”, AEU - International Journal of Electronics and Communications, vol 116, p. 153040, Mar. 2020, DOI: 10.1016/j.aeue.2019.153040 [12] X. Huang, Z. Liu, Q. Li and F. C. Lee, “Evaluation and application of 600 V GaN HEMT in cascode structure”, IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2453-2461, Aug. 2013, DOI: 10.1109/TPEL.2013.2276127 [13] L. Efthymiou, G. Longobardi, G. Camuso, T. Chien, M. Chen and F. Udrea, ”On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices”, Applied Physics Letters, vol. 110, no. 12, Mar. 2017, DOI: 10.1063/1.4978690 [14] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska and M. S. Shur, "AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates," Journal of Applied Physics, vol. 77, no. 9, pp. 1339–1341, Aug. 2000, DOI: 10.1063/1.1290269. [15] J. He, W. C. Cheng, Y. Jiang, Q.Wang and H. Yu, "Study of bilayer Al2O3/in-situ SiNx dielectric stacks for gate modulation in ultrathin-barrier AlGaN/GaN MIS-HEMTs," 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021, DOI: 10.1109/EDTM50988.2021.9420933 [16] S. Zhang, X. Liu, K. Wei, S. Huang, X. Chen, Y. Zhang, Y. Zheng, G. Liu, T. Yuan, X. Wang, H. Yin, Y. Yao and J. Niu, "Suppression of Gate Leakage Current in Ka-Band AlGaN/GaN HEMT With 5-nm SiN Gate Dielectric Grown by Plasma-Enhanced ALD," IEEE Transactions on Electron Devices, vol. 68, no. 1, pp. 49-52, Jan. 2021, DOI: 10.1109/TED.2020.3037888. [17] A. J. Suria, A. S. Yalamarthy, H. So and D. G Senesky, "DC characteristics of ALD-grown Al2O3/AlGaN/GaN MIS-HEMTs and HEMTs at 600 °C in air”, Semiconductor Science and Technology, vol. 31, no. 11, Oct. 2016, DOI: 10.1088/0268-1242/31/11/115017. [18] S. Huang, S. Yang, J. Roberts and K. J. Chen, "Threshold Voltage Instability in Al2O3/GaN/AlGaN/GaN Metal–Insulator–Semiconductor High-Electron Mobility Transistors," Japanese Journal of Applied Physics, vol. 50, Oct. 2011, DOI: 10.1143/JJAP.50.110202. [19] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo and E. R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices”, IEEE Transactions on Electron Devices, vol. 54, no. 10, pp. 2589-2597, Sep. 2007, DOI: 10.1109/TED.2007.904476 [20] J. S. Moon, B. Grabar, J. Wong, D. Chuong, E. Arkun, D. V. Morales, P. Chen, C. Malek, D. Fanning, N. Venkatesan and P. Fay, “Power Scaling of Graded-Channel GaN HEMTs with Mini-Field-Plate T-gate and 156 GHz f T” IEEE Electron Device Letters, vol. 42, no.6, pp. 796-799, Apr. 2021, DOI: 10.1109/LED.2021.3075926 [21] Moore, Gordon. "Progress In Digital Integrated Electronics", Electron devices meeting, vol. 21, pp. 11-13, Dec. 2015, DOI: 10.1002/9781119329756.ch5 [22] R. Rios, N. D. Arora, and C.-L. Huang, “An analytic polysilicondepletion effect model for MOSFETs,” IEEE Electron Device Letters.,vol. 15, no. 4, pp. 129–131, Apr. 1994, DOI:10.1109/55.285407 [23] N. D. Arora, R. Rios, and C.-L. Huang, “Modeling the polysilicon depletion effect and its impact on submicrometer CMOS circuit performance,”IEEE Transactions on Electron Devices, vol. 42, no. 5, pp. 935–943, May 1995, DOI: 10.1109/16.381991 [24] A. S. Spinelli, A. Pacelli, and A. Lacaita, “Polysilicon quantization effects on electrical properties of MOS transistors,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2366–2371, Dec. 2000, DOI: 10.1109/16.887023 [25] P. W. Peacock, J. Robertson, “Band offsets and Schottky barrier heights of high dielectric constant oxides,” Applied Physics Letters, vol. 92, no. 8, pp. 4712-4721, OCT. 2002, DOI: 10.1063/1.1506388 [26] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, "High-kappa/metal-gate stack and its MOSFET characteristics," IEEE Electron Device Letters., vol. 25, no. 6, pp. 408-410, Jun. 2004, DOI: 10.1109/LED.2004.828570 [27] R. R. Troutman, "VLSI limitations from drain-induced barrier lowering," IEEE Journal of Solid-State Circuits, vol. 14, pp. 383-391, Apr. 1979, DOI: 10.1109/T-ED.1979.19449 [28] F.-C. Hsu, R. S. Muller, and C. Hu, "A simplified model of short-channel MOSFET characteristics in the breakdown mode," IEEE Transactions on Electron Devices, vol. 30, no. 6, pp. 571-576, Jun. 1983, DOI: 10.1109/T-ED.1983.21170 [29] V. De and S. Borkar, "Technology and design challenges for low power and high performance," in Proceedings of the 1999 international symposium on Low power electronics and design, pp. 163-168, 1999, DOI: 10.1145/313817.313908 [30] V. Subramanian, A. Mercha, B. Parvais, J. Loo, C. Gustin, M. Dehan, et al., "Impact of fin width on digital and analog performances of n-FinFETs," Solid-State Electronics, vol. 51, no. 4, pp. 551-559, Apr. 2007, DOI: 10.1016/j.sse.2007.02.003 [31] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320-2325, Dec. 2000, DOI: 10.1109/16.887014 [32] T.-s. Park, S. Choi, D. Lee, J. Yoo, B. Lee, J. Kim, et al., "Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk Si wafers," in VLSI Technology, Digest of Technical Papers. 2003 Symposium on, Jun. 2003, pp. 135-136, DOI: 10.1109/VLSIT.2003.1221122 [33] T.-S. Park, H. J. Cho, J. D. Choe, I. H. Cho, D. Park, E. Yoon, et al., "Characteristics of body-tied triple-gate pMOSFETs," IEEE Electron Device Lettersers, vol. 25, no. 12, pp. 798-800, Dec. 2004, DOI: 10.1049/el:20071064 [34] C. D. Young, et al. "Critical discussion on (100) and (110) orientation dependent transport: nMOS planar and FinFET." 2011 Symposium on VLSI Technology-Digest of Technical Papers. IEEE, Jun. 2011, DOI: 10.1177/001258068210034001 [35] Y. K. Choi, T. J. King and C. Hu, "A spacer patterning technology for nanoscale CMOS," IEEE Transactions on Electron Devices, vol. 49, no. 3, pp. 436-441, Mar. 2002, DOI: 10.1109/16.987114. Chapter 2 [1] A. Abdulsalam, N. Karumuri and G. Dutta, "Modeling and Analysis of Normally-OFF p-GaN Gate AlGaN/GaN HEMT as an ON-Chip Capacitor," IEEE Transactions on Electron Devices, vol. 67, no. 9, pp. 3536-3540, Sept. 2020, DOI: 10.1109/TED.2020.3007370. [2] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, Canada, 2006, DOI: 10.1002/0471749095.ch10 [3] S. M. Sze, Y. Li and K. K. Ng, “Physics of semiconductor devices”, John wiley & sons, 2021. DOI: 10.1002/047001590X Chapter 3 [1] R. Ma, K. H. Teo, S. Shinjo, K. Yamanaka and P. M. Asbeck, "A GaN PA for 4G LTE-Advanced and 5G: Meeting the Telecommunication Needs of Various Vertical Sectors Including Automobiles, Robotics, Health Care, Factory Automation, Agriculture, Education, and More," IEEE Microwave Magazine, vol. 18, no. 7, pp. 77-85, Nov.-Dec. 2017, DOI: 10.1109/MMM.2017.2738498. [2] F. Iucolanoa and T. Bolesb, "GaN-on-Si HEMTs for wireless base stations," in Materials Science in Semiconductor Processing, vol. 98, no. 7, pp. 100-105, Aug. 2019, DOI:10.1016/j.mssp.2019.03.032. [3] N. Islam, M. F. P. Mohamed, M. F. A. J. Khan, S. Falina, H. Kawarad and M. Syamsul," Reliability, “Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review," Crystals, vol. 12, pp. 1581, Nov. 2022, DOI:10.3390/cryst121115813. [4] L. Spaziani and L. Lu, "Silicon, GaN and SiC: There's room for all: An application space overview of device considerations," 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 2018, pp. 8-11, DOI: 10.1109/ISPSD.2018.8393590. [5] A.S. Augustine Fletcher and D. Nirmal, " A survey of Gallium Nitride HEMT for RF and high power applications," Superlattices and Microstructures, vol. 109, pp. 519-537, Sep. 2017, DOI:10.1016/j.spmi.2017.05.042. [6] C. J. Yu, C. W. Hsu, M. C. Wu, W. C. Hsu, C. Y. Chuang and J.Z. Liu, "Improved DC and RF Performance of Novel MIS p-GaN-Gated HEMTs by Gate-All-Around Structure," IEEE Electron Device Lettersers, vol. 41, no. 5, pp. 673-676, May. 2020, DOI: 10.1109/LED.2020.2980584. [7] D. Mahajan and S. Khandelwal, "Impact of p-GaN layer Doping on Switching Performance of Enhancement Mode GaN Devices," 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 2018, pp. 1-4, DOI: 10.1109/COMPEL.2018.8460098. [8] F. Roccaforte, G. Greco, P. Fiorenza and F. Iucolano, "An Overview of Normally-Off GaN-Based High Electron Mobility Transistors," materials, vol. 12, no. 10, pp. 1–18, May. 2019, DOI:10.3390/ma12101599. [9] K. J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, and J. N. Wang, "Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology," Proc. IEEE Int. Electron Devices Meeting, Washington, DC, USA, Dec. 2011, pp. 19.4.1–19.4.4, DOI: 10.1109/IEDM.2011.6131585. [10] J. Wei, R. Xie, H. Xu, H. Wang, Y. Wang, M. Hua, K. Zhong, G. Tang, J. He, M. Zhang, and K. J. Chen, "Charge storage mechanism of drain induced dynamic threshold voltage shift in p-GaN gate HEMTs," IEEE Electron Device Letters., vol. 40, no. 4, pp. 526–529 Apr. 2019, DOI: 10.1109/LED.2019.2900154. [11] H. Jiang, R. Zhu, Q. Lyu and K. M. Lau, "High-Voltage p-GaN HEMTs With OFF-State Blocking Capability After Gate Breakdown," IEEE Electron Device Lettersers, vol. 40, no. 4, pp. 530-533, Apr. 2019, DOI: 10.1109/LED.2019.2897694. [12] X. Tang, B. Li, H. A. Moghadam, P. Tanner, J. Han and S. Dimitrijev, "Effect of Hole-Injection on Leakage Degradation in a p -GaN Gate AlGaN/GaN Power Transistor," IEEE Electron Device Lettersers, vol. 39, no. 8, pp. 1203-1206, Aug. 2018, DOI: 10.1109/LED.2018.2849398. [13] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura and T. Ogura, "Influence of surface defect charge at AlGaN-GaN-HEMT upon Schottky gate leakage current and breakdown voltage," IEEE Transactions on Electron Devices, vol. 52, no. 2, pp. 159-164, Feb. 2005, DOI: 10.1109/TED.2004.842710. [14] C. H. Liu, H. C. Chiu, H. C. Wang, H. L. Kao and C. R. Huang, "Improved Gate Reliability Normally-Off p GaN/AlN/AlGaN/GaN HEMT With AlGaN Cap-Layer," IEEE Electron Device Lettersers, vol. 42, no. 10, pp. 1432-1435, Oct. 2021, DOI: 10.1109/LED.2021.3109054. [15] H. C. Chiu, C. H. Liu, C. R. Huang, C. C. Chiu, H. C. Wang, H. L. Kao, S. Y. Lin, and F. T. Chien, "Normally-Off p-GaN Gated AlGaN/GaN MIS-HEMTs with ALD-Grown Al2O3/AlN Composite Gate Insulator," Membranes, vol. 11, no. 10, pp. 727, Sep. 2021, DOI: 10.3390/membranes11100727. [16] Z. Zheng, W. Song, L. Zhang, S. Yang, J. Wei and K. J. Chen, "High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform," IEEE Electron Device Lettersers, vol. 41, no. 1, pp. 26-29, Jan. 2020, DOI: 10.1109/LED.2019.2954035. [17] G. Zhou, Z. Wan, G. Yang, Y. Jiang, R. Sokolovskij, H. Yu, and G. Xia, "Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates," IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 875–880, Mar. 2020, DOI: 10.1109/TED.2020.2968596. [18] C. H. Liu, H. C. Chiu, C. R. Huang, K. J. Chang, C. T. Chen and K. P. Hsueh, "Low Gate Lag Normally-Off p-GaN/AlGaN/GaN High Electron Mobility Transistor with Zirconium Gate Metal," Crystals, vol. 10, no. 1, pp. 25, Jan. 2020, DOI: 10.3390/cryst10010025. [19] R. Hao, K. Fu, G. Yu, W. Li, J. Yuan, L. Song, Z. Zhang, S. Sun, X. Li, Y. Cai, X. Zhang, and B. Zhang, "Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment," Applied Physics Letters, vol. 109, no. 15, p.152106, Oct. 2016, DOI: 10.1063/1.4964518. [20] X. K. Liu, H. C. Chiu, C. H. Liu, H. L. Kao, C. W. Chiu, H. C. Wang, J. W. Ben and C. R. Huang, "Normally-off p-GaN Gated AlGaN/GaN HEMTs Using Plasma Oxidation Technique in Access Region," IEEE Journal of the Electron Devices Society, vol. 8, pp. 229-234, Feb. 2020, DOI: 10.1109/JEDS.2020.2975620. [21] H. C. Chiu, Y. S. Chang, B. H. Li, H. C. Wang, H. L. Kao, C. W. Hu, R. Xuan, "High-Performance Normally Off p-GaN Gate HEMT With Composit AlN/Al0.17Ga0.83N/Al0.3Ga0.7N Barrier Layers Design," IEEE Journal of the Electron Devices Society, vol. 6, pp. 201-206, Jan. 2018, DOI: 10.1109/JEDS.2018.2789908. [22] K. Liu, R. Wang, C. Wang, X. Zheng, X. Ma, J. Bai, B. Cheng, R. Liu, A. Li, Y. Zhao, and Y. Hao, "The influence of lightly doped p-GaN cap layer on p-GaN/AlGaN/GaN HEMT," Semiconductor Science and Technology, vol. 37, no. 7, p. 075005, May. 2022, DOI: 10.1088/1361-6641/ac643f. [23] H. C. Chiu, L. Y. Peng, C. W. Yang, H. C. Wang, Y. M. Hsin and J. I. Chyi, "Analysis of the Back-Gate Effect in Normally OFF p-GaN Gate High-Electron Mobility Transistor," IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 507-511, Feb. 2015, DOI: 10.1109/TED.2014.2377747. [24] M. Borga, M. Meneghini, S. Stoffels, M. Van Hove, M. Zhao, X. Li, S. Decoutere, E. Zanoni and G. Meneghesso, "Impact of the substrate and buffer design on the performance of GaN on Si power HEMTs," Microelectronics Reliability, vol. 88–90, pp. 584–588, Sep. 2018, DOI: 10.1016/j.microrel.2018.06.036. [25] Y. Liu, Q. Yu, and J. Du, "Simulation design of a high‑breakdown‑voltage p‑GaN‑gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications," Microelectronics Reliability, vol. 19, pp. 1527–1537, Jul. 2020, DOI: 10.1007/s10825-020-01541-2. [26] Y. Wang, S. Hu, J. Guo, H. Wu, T. Liu and J. Jiang, "Enhancement of Breakdown Voltage in p-GaN Gate AlGaN/GaN HEMTs With a Stepped Hybrid GaN/AlN Buffer Layer," IEEE Journal of the Electron Devices Society, vol. 10, pp. 197-202, Jan. 2022, DOI: 10.1109/JEDS.2022.3145797. [27] P. Moens, P. Vanmeerbeek, A. Banerjee, J. Guo, C. Liu, P. Coppens, A. Salih, M. Tack, M. Caesar, M. J. Uren, M. Kuball, M. Meneghini, G. Meneghesso, and E. Zanoni, "On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650V GaN power devices," 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Hong Kong, China, 2015, pp. 37-40, DOI: 10.1109/ISPSD.2015.7123383. [28] M. Zhu, J. Ma and Elison Matioli, "Investigation of p-GaN tri-Gate normally-Off GaN Power MOSHEMTs," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 345-348, DOI: 10.1109/ISPSD46842.2020.9170183. [29] Y. Wu, M. Nuo, J. Yang, Z. Zheng, L. Zhang, K. J. Chen, M. Hua, Y. Hao, X. Yang, B. Shen, M. Wang and J. Wei, "High Dynamic Stability in Enhancement-Mode Active-Passivation p-GaN Gate HEMT," 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, 2023, pp. 378-381, DOI: 10.1109/ISPSD57135.2023.10147690. [30] Q. Jiang, C. Liu, Y. Lu and K. J. Chen, "1.4-kV AlGaN/GaN HEMTs on a GaN-on-SOI Platform," IEEE Electron Device Lettersers, vol. 34, no. 3, pp. 357-359, Mar. 2013, DOI: 10.1109/LED.2012.2236637. [31] Y. C. Lai, Y. N. Zhong, M. Y. Tsai and Y. M. Hsin, "Gate Capacitance and Off-State Characteristics of E-Mode p-GaN Gate AlGaN/GaN High-Electron-Mobility Transistors After Gate Stress Bias," Journal of Electronic Materials, vol. 50, no. 3, pp. 1162-1166, Jan. 2021, DOI:10.1007/s11664-020-08691-w. [32] W. Saito, T. Suwa, T. Uchihara, T. Naka, and T. Kobayashi, "Breakdown behaviour of high-voltage GaN-HEMTs," Microelectronics Reliability, vol. 55, no. 9-10, pp. 1682-1686, Aug. 2015, DOI:10.1016/j.microrel.2015.06.126. [33] Y. W. , M. Hua, G. Tang, J. Lei, Z. Zheng, J. Wei and K. J. Chen, "Dynamic OFF-State Current (Dynamic IOFF) in p-GaN Gate HEMTs With an Ohmic Gate Contact," in IEEE Electron Device Lettersers, vol. 39, no. 9, pp. 1366-1369, Sep. 2018, DOI: 10.1109/LED.2018.2852699. [34] S. Elangovan, S. Cheng and E. Y. Chang, "Reliability Characterization of Gallium Nitride MIS-HEMT Based Cascode Devices for Power Electronic Applications," Energies, vol. 13, no. 10, pp. 2628, May. 2020. DOI: 10.3390/en13102628. [35] C. Zhang, S. Li, S. Liu, J. Wei, W. Wu and W. Sun, "Electrical Degradations of p-GaN HEMT under High Off-state Bias Stress with Negative Gate Voltage," 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), Hangzhou, China, 2019, pp. 1-4, DOI: 10.1109/IPFA47161.2019.8984885. [36] M. D. Jacunski, Michael S. Shur, Albert A. Owusu, Trond Ytterdal, Michael Hack and Benjamín Iñíguez, "A short-channel DC SPICE model for polysilicon thin-film transistors including temperature effects," IEEE Transactions on Electron Devices, vol. 46, no. 6, pp. 1146-1158, Jun. 1999, DOI: 10.1109/16.766877. [37] T. E. Chang, C. Huang and T. Wang, "Mechanisms of interface trap-induced drain leakage current in off-state n-MOSFET's," IEEE Transactions on Electron Devices, vol. 42, no. 4, pp. 738-743, Apr. 1995, DOI: 10.1109/16.372079. [38] B. W. Chen, H. L. Chen, T. C. Chang, S. Member, Y. J. Hung, S. P. Huang, Y. Z. Zheng, Y. H. Lin, P. Y. Liao, L. H. Chen, J. W. Yang, H. C. Chiang, W. C. Su, Y. C. Tsao, Ann-Kuo Chu, Hung-Wei Li, Chih-Hung Tsai, Hsueh-Hsing Lu, Kuan-Chang Chang, and T. F. Young, "Systematic Analysis of High-Current Effects in Flexible Polycrystalline-Silicon Transistors Fabricated on Polyimide," IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3167-3173, Aug. 2017, DOI: 10.1109/TED.2017.2715500. [39] S. P. Huang, P. H. Chen, Y. C. Tsao, H. C. Chen, Y. Z. Zheng, A. K. Chu, Y. S. Shih, Y. X. Wang, C. C. Wu, Y. K. Shih, Y. H. Chung, W. H. Chen, T. T. J. Wang, S. D. Zhang and T. C. Chang, "Abnormal C – V Hump Effect Induced by Hot Carriers in Gate Length-Dependent p-Type LTPS TFTs," IEEE Transactions on Electron Devices, vol. 66, no. 11, pp. 4764-4767, Nov. 2019, DOI: 10.1109/TED.2019.2942149. [40] A. Fariza, A. Lesnik, S. Neugebauer, M. Wieneke, J. Hennig, J. Bläsing, H. Witte, A. Dadgar and A. Strittmatter, “Leakage currents and Fermi-level shifts in GaN layers upon iron and carbon-doping”, Journal of Applied Physics, vol. 122, no. 2, Jul. 2017, DOI: 10.1063/1.4993180 [41] H. S. Kang, D. S. Kim, C. H. Won, Y. J. Kim, Y. J. Yoon, D. K. Kim, J. H. Lee, Y. Bae and S. Cristoloveanu, “Impact of Multi-Layer Carbon-Doped/Undoped GaN Buffer on Suppression of Current Collapse in AlGaN/GaN HFETs”, International Journal of High Speed Electronics and Systems, vol. 23, no. 03n04, p. 1450017, 2014, DOI: 10.1142/9789814656917_0004 [42] J. T. Chen, U. Forsberg and E. Janzén, “Impact of residual carbon on two-dimensional electron gas properties in AlxGa1− xN/GaN heterostructure”, Applied Physics Letters, vol. 102, no. 19, May. 2013, DOI: 10.1063/1.4804600 Chapter 4 [1] X. Zhou, B. Sheng, Student Member, IEEE, W. Liu, Student Member, IEEE, Y. Chen, Member, IEEE, L. Wang, Senior Member, IEEE, Y. F. Liu, Fellow, IEEE, and P. C. Sen, "A High-Efficiency High-Power-Density On-Board Low-Voltage DC–DC Converter for Electric Vehicles Application," IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12781-12794, Apr. 2021, DOI: 10.1109/TPEL.2021.3076773. [2] J. C. Mayeda, D. Y. C. Lie, and J. Lopez, "A Highly Efficient 18–40 GHz Linear Power Amplifier in 40-nm GaN for mm-Wave 5G," IEEE Microwave and Wireless Components Letters, vol. 31, no. 8, pp. 1008-1011, Jun. 2021, DOI: 10.1109/LMWC.2021.3085241. [3] R. Sun, J. Lai, W. Chen, and B. Zhang, "GaN Power Integration for High Frequency and High Efficiency Power Applications: A Review," IEEE Access, vol. 8, pp. 15529-15542, DOI: 10.1109/ACCESS.2020.2967027. [4] U. K. Mishra, P. Parikh, and Yi-Feng Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, Jan. 2020, DOI: 10.1109/ACCESS.2020.2967027. [5] B. Lu and T. Palacios, "High Breakdown ( >1500 V ) AlGaN/GaN HEMTs by Substrate-Transfer Technology," IEEE Electron Device Lettersers, vol. 31, no. 9, pp. 951-953, Sep. 2010, DOI: 10.1109/LED.2010.2052587. [6] Z. Gao, M. F. Romero, and F. Calle, "Thermal and Electrical Stability Assessment of AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistors (MOS-HEMTs) With HfO2 Gate Dielectric," IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3142-3148, Aug. 2018, DOI: 10.1109/TED.2018.2858319. [7] W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, "Demonstration of 13.56-MHz class-E amplifier using a high-Voltage GaN power-HEMT," IEEE Electron Device Lettersers, vol. 27, no. 5, pp. 326-328, May 2006, DOI: 10.1109/LED.2006.872321. [8] Y. Dora, A. Chakraborty, L. Mccarthy, S. Keller, S. P. Denbaars and U. K. Mishra, "High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates," IEEE Electron Device Lettersers, vol. 27, no. 9, pp. 713-715, Sep. 2006, DOI: 10.1109/LED.2006.881020. [9] J. H. Lin F. M. Ciou, T. C. Chang, Y. S. Lin, J. T. Hsu, F. Y. Jin, K. C. Chang, T. T. Kuo, K. H. Chen, Y. H. Hung, Y. Z. Zheng, "Abnormal Threshold Voltage Degradation Under Semi-On State Stress in Si3N4/AlGaN/GaN-HEMT," IEEE Electron Device Lettersers, vol. 43, no. 9, pp. 1420-1423, Sep. 2022, DOI: 10.1109/LED.2022.3190541. [10] A. Aouf, F. Djeffal, and F. Douak, "Thermal stability investigation of power GaN HEMT including self-heating effects," 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 2017, pp. 451-454, DOI: 10.1109/ICoSC.2017.7958745. [11] H. Morkoc, R. Cingolani, and B. Gil, "Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors," Solid-State Electron., vol. 43, pp. 1909–1927, Oct. 1999, DOI: 10.1016/S0038-1101(99)00276-9. [12] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001, DOI: 10.1109/16.824511. [13] B. Duan, J. Yuan, Y. Wang, L. Yang, and Y. Yang, "Novel Enhance-Mode AlGaN/GaN JFET With BV of Over 1.2 kV Maintaining Low RON,sp," IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1200-1205, Mar. 2022, DOI: 10.1109/TED.2021.3061150. [14] R. Brown, D. Macfarlane, A. Al-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, and E. Wasige, "A Sub-Critical Barrier Thickness Normally-Off AlGaN/GaN MOS-HEMT," IEEE Electron Device Lettersers, vol. 35, no. 9, pp. 906-908, Sep. 2014, DOI: 10.1109/LED.2014.2356720. [15] Z. Xu, J. Wang, J. Liu, C. Jin, Y. Cai, Z. Yang, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, and Y. Hao, "Demonstration of Normally-Off Recess-Gated AlGaN/GaN MOSFET Using GaN Cap Layer as Recess Mask," IEEE Electron Device Lettersers, vol. 35, no. 12, pp. 1197-1199, Dec. 2014, DOI: 10.1109/LED.2014.2356720. [16] H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K. M. Lau, "1300 V Normally-OFF p-GaN Gate HEMTs on Si With High ON-State Drain Current," Oct. 2017, DOI: 10.1109/LED.2017.2788266. [17] Roccaforte, F., Greco, G., Iucolano, F., Fiorenza, P., "An Overview of Normally-Off GaN-Based High Electron Mobility Transistors," Materials, vol. 12, no. 10, 1599, Oct. 2019, DOI: 10.3390/ma12101599. [18] X. Li, M. Zhao, B. Bakeroot, K. Geens, W. Guo, S. You, S. Stoffels, V-P Lempinen, J. Sormunen, G. Groeseneken, and S. Decoutere, "Buffer Vertical Leakage Mechanism and Reliability of 200-mm GaN-on-SOI," IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 553-560, Jan. 2019, DOI: 10.1109/TED.2018.2875858. [19] M. Wang, D. Yan, C. Zhang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, and B. Shen, "Investigation of Surface- and Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors Using a Soft Switched Pulsed I−V Measurement," IEEE Electron Device Lettersers, vol. 35, no. 11, pp. 1094-1096, Nov. 2014, DOI: 10.1109/LED.2014.2356720. [20] K. J. Chen, O. Häberlen, A. Lidow, C. l. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, "GaN-on-Si Power Technology: Devices and Applications," IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 779-795, Mar. 2017, DOI: 10.1109/TED.2016.2544243. [21] P. Gamarra, C. Lacam, M. Tordjman, J. Splettstösser, B. Schauwecker, di Forte-Poisson M.-A., "Optimisation of a carbon-doped buffer layer for AlGaN/GaN HEMT devices," Journal of Crystal Growth, vol. 414, no. 15, pp. 232-236, Jan. 2015, DOI: 10.1016/j.jcrysgro.2015.12.045. [22] S. Yang, S. Han, K. Sheng, and K. J. Chen, "Dynamic On-Resistance in GaN Power Devices: Mechanisms, Characterizations, and Modeling," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1425-1439, Sept. 2019, DOI: 10.1109/JESTPE.2019.2925117. [23] M. J. Uren, J. Moreke, and M. Kuball, "Buffer Design to Minimize Current Collapse in GaN/AlGaN HFETs," IEEE Transactions on Electron Devices, vol. 59, no. 12, pp. 3327-3333, Dec. 2012, DOI: 10.1109/TED.2012.2216535. Chapter 5 [1] L. H. Hsu, Y. Y. Lai, P. T. Tu, C. Langpoklakpam, Y. T. Chang, Y. W. Huang, W. C. Lee, A.J. Tzou, Y.J. Cheng, C. H. Lin, H.-C. Kuo and E. Y. Chang, “Development of GaN HEMTs Fabricated on Silicon, Silicon-on-Insulator, and Engineered Substrates and the Heterogeneous Integration”, Micromachines, vol. 12, no. 10, p.1159, Sep. 2021, DOI: 10.3390/mi12101159 [2] M. Ishida, T. Ueda, T. Tanaka and D. Ueda, "GaN on Si Technologies for Power Switching Devices," IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3053-3059, Oct. 2013, DOI: 10.1109/TED.2013.2268577 [3] N. Zhang, B. Moran, S. P. DenBaars, U. K. Mishra, X. W. Wang and T. P. Ma, "Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs," International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), 2001, pp. 25.5.1-25.5.4, DOI: 10.1109/IEDM.2001.979575. [4] S. Yoshida, H. Ishii, J. Li, D. Wang andM. Ichikawa, "A high-power AlGaN/GaN heterojunction field-effect transistor," Solid-State Electronics, vol. 47, no. 3, pp. 589–592, Mar. 2003, DOI: 10.1016/S0038-1101(02)00419-7. [5] Y. H. Yeh, T. C. Chang, W. C. Huang, H. X. Zheng, Y. C. Tsao, F. M. Ciou, Y. S. Lin, Y. F. Tan, L. C. Sun, K. J. Zhou, K. H. Chen and J. W. Huang, “Obtaining impact ionization-induced hole current by electrical measurements in gallium nitride metal–insulator–semiconductor high electron mobility transistors,” Journal of Physics D, vol. 54, no. 28, p. 285104, Jul. 2021, DOI: 10.1088/1361-6463/abfad5 [6] Y. S. Lin, Y. L. Chen, T. C. Chang, F. M. Ciou, Q. Zhu, M. C. Tai, W. C. Su, T. T. Kuo, K. H. Chen, J. J. Zhu, M. H. Mi, X. H. Ma, and Y. Hao, “Investigating two-stage degradation of threshold voltage induced by off-state stress in AlGaN/GaN HEMTs,” Semiconductor Science and Technology, vol. 37, no. 2, p. 025017, Feb. 2022, DOI: 10.1088/1361-6641/ac4404 [7] Y. L. Tsai, T. C. Chang, Y. C. Tsao, M. C. Tai, H. Y. Tu, Y. T. Chien, F. Y. Jin, H. X. Zheng, Y. S. Lin, F. M. Ciou, Y. H. Lin, P. Y. Wu and J. W. Huang, “Improving Breakdown Voltage in AlGaN/GaN Metal-Insulator-Semiconductor HEMTs Through Electric-Field Dispersion Layer Material Selection,” IEEE Transactions on Device and Materials Reliability, vol. 21, no.3, pp. 320-323, Mar. 2021, DOI: 10.1109/TDMR.2021.3086515 [8] P. Y. Wu, T. C. Chang, M. C. Chen, H. X. Zheng, Y. S. Lin, X. Y. Tsai, K. J. Chang, W. C. Kuo, C. W. Lin, G. S. Liu and T. M. Tsai, “Performance and Reliability Optimization of Supercritical-Nitridation-Treated AlGaN/GaN High-Electron-Mobility Transistors,” IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4317-4321, Sep. 2021, DOI: 10.1109/TED.2021.3099450 [9] L. Efthymiou, G. Longobardi, G. Camuso, T. Chien, M. Chen and F. Udrea, “On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices,” Applied Physics Letters., vol. 110, no. 12, p. 123502, Mar. 2017, DOI: 10.1063/1.4978690 [10] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J. B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin and U. I. Chung, “p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current,” IEEE Electron Device Letters, vol. 34, no. 2, pp. 202-204, Feb. 2013, DOI: 10.1109/LED.2012.2230312 [11] A. Mohanbabu, N. Mohankumar, D. G. Raj, P. Sarkar and S. K. Saha, “Efficient III-Nitride MIS-HEMT devices with high-κ gate dielectric for high-power switching boost converter circuits,” Superlattices Microstruct., vol. 103, pp. 270-284, Mar. 2017, DOI: 10.1016/j.spmi.2017.01.043 [12] N. Moser, K. Liddy, A. Islam, N. Miller, K. Leedy, T. Asel, S. Mou, A. Green and K. Chabak, “Toward high voltage radio frequency devices in β-Ga2O3,” Applied Physics Letters., vol. 117, no.24, p.242101, Dec. 2020, DOI: 10.1063/5.0031482 [13] A. Hokazono, S. Balasubramanian, K. Ishimaru, H. Ishiuchi, H. C. Hu, H. T. –J. King Liu, “MOSFET Hot-Carrier Reliability Improvement by Forward-Body Bias”, IEEE Electron Device Letters., vol. 27, no. 7, pp. 605-608, Jul. 2006, DOI: 10.1109/LED.2006.877306 [14] R. R. Troutman, “VLSI limitations from drain-induced barrier lowering”, IEEE Journal of Solid-State Circuits, vol.14, no. 2, pp. 383-391, 1979, DOI: 10.1109/T-ED.1979.19449 [15] A. A. Mutlu and M. Rahman, “Two-dimensional analytical model for drain induced barrier lowering (DIBL) in short channel MOSFETs”, In Proceedings of the IEEE SoutheastCon 2000, pp. 340-344, Apr. 2000, DOI: 10.1109/SECON.2000.845589 [16] F. N. A. K. Agha, Y. Hashim and W. A. S. Abdullah, “Temperature characteristics of Gate all around nanowire channel Si-TFET” Journal of Physics: Conference Series, vol. 1755, no. 1, p. 012045, Feb. 2021, DOI: 10.1088/1742-6596/1755/1/012045 [17] W. H. Lo, T. C. Chang, J. Y. Tsai, C. H. Dai, C. E. Chen, S. H. Ho, H. M. Chen, O. Cheng, and C. T. Huang, "Charge trapping induced drain-induced-barrier-lowering in HfO2/TiN p-channel metal-oxide-semiconductor-field-effect-transistors under hot carrier stress," Applied Physics Letters., vol. 100, no. 15, p. 152102, Apr. 2012, DOI: 10.1063/1.3697644 [18] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo, and E. R. Heller, "Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices," IEEE Transactions on Electron Devices, vol. 54, no. 10, pp. 2589-2597, Oct. 2007, DOI: 10.1109/TED.2007.904476 [19] J. S. Moon, B. Grabar, J. Wong, D. Chuong, E. Arkun, D. V. Morales, P. Chen, C. Malek, D. Fanning, N. Venkatesan, and P. Fay, "Power Scaling of Graded-Channel GaN HEMTs with Mini-Field-Plate T-gate and 156 GHz f T," IEEE Electron Device Letters, vol. 42, no. 6, pp. 796-799, Jun. 2021, DOI: 10.1109/LED.2021.3075926 [20] R. Vetury, Y. Wei, D. S. Green, S. R. Gibb, T. W. Mercier, K. Leverich, P. M. Garber, and J. B. Shealy, "High power, high efficiency, AlGaN/GaN HEMT technology for wireless base station applications," In IEEE MTT-S International Microwave Symposium Digest, pp. 487-490, Jun. 2005, DOI: 10.1109/MWSYM.2005.1516636 [21] S. J. Han, S. Oida, K. A. Jenkins, and D. D. Lu, "High f MAX/f T ratio in multi-finger embedded T-shaped gate graphene transistors," In 71st Device Research Conference, pp. 33-34, Jun. 2013, DOI: 10.1109/DRC.2013.6633781 [22] C. Gupta, A. Gupta, A. K. Bansal, and A. Dixit, "Gate topologies for mitigation of short channel effects in highly scaled AlGaN/GaN HEMTs," In 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1-2, Jun. 2017, DOI: 10.1109/EDSSC.2017.8126565. [23] S. M. Razavi, S. H. Zahiri, and S. E. Hosseini, "A novel AlGaN/GaN HEMT with a p-layer in the barrier," Physica E: Low-dimensional Systems and Nanostructures, vol. 54, pp. 24-29, Mar. 2013, DOI: 10.1016/j.sse.2016.12.001 [24] E. Malguth, A. Hoffmann, W. Gehlhoff, O. Gelhausen, M. R. Phillips, and X. Xu, "Structural and electronic properties of Fe 3+ and Fe 2+ centers in GaN from optical and EPR experiments," Physical Review B, vol. 74, no. 16, pp. 165202, Oct. 2006, DOI: 10.1103/PhysRevB.74.165202 [25] Silvaco Inc., Santa Clara, CA, USA. (2016). Technology Computer-Aided Design. [Online]. Available: www.silvaco.com/products/tcad/devicesimulation/atlas.html [26] J. D. Albrecht, R. P. Wang, P. P. Ruden, M. Farahmand, and K. F. Brennan, "Electron transport characteristics of GaN for high temperature device modeling," Journal of Applied Physics., vol. 83, no. 9, pp. 4777-4781, May 1998, DOI: 10.1063/1.367269 [27] A. Schenk, "A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon," Solid State Electron, vol. 35, no. 11, pp. 1585-1596, Nov. 1992, DOI: 10.1016/0038-1101(92)90184-E [28] C. R. Crowell, and S. M. Sze, “Current transport in metal-semiconductor barriers”, Solid State Electron, vol. 9, no. 11-12, pp. 1035-1048, Nov.–Dec. 1966, DOI: 10.1016/0038-1101(92)90184-E [29] S. M. Sze, Y. Li and K. K. Ng, “Physics of semiconductor devices”, John wiley & sons, 2021. DOI: 10.1002/047001590X [30] P. Pipinys and V. Lapeika, “Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling,” Journal of Applied Physics., vol. 99, no. 9, p. 093709, Sep. 2006, DOI: 10.1063/1.2199980 [31] D. S. Lee, X. Gao, S. Guo, and T. Palacios, “Inaln/gan hemts with algan back barriers,” IEEE Electron Device Letters, vol. 32, no. 5, pp. 617-619, May 2011, DOI: 10.1109/LED.2011.2111352 [32] D. M. Geum, S. H. Shin, M. S. Kim, and J. H. Jang, “75 nm T‐shaped gate for In0. 17Al0. 83N/GaN HEMTs with minimal short‐channel effect,” Electron. Letters, vol. 49, no. 24, pp. 1536-1537, Nov. 2013, DOI: 10.1049/el.2013.2769 [33] W. Ha, J. C. Zhang, S. L. Zhao, S. S. Ge, H. J. Wen, C. F. Zhang, X. H. Ma, and Y. Hao, “AlGaN channel high electron mobility transistors with ultra-low drain-induced-barrier-lowering coefficient,” Chinese Physics Letters Vol. 30, no. 12, p. 127201, Dec. 2013, DOI: 10.1088/0256-307X/30/12/127201 [34] A. Malmros, P. Gamarra, M. Thorsell, H. Hjelmgren, C. Lacam, S. L. Delage, H. Zirath, and N. Rorsman, “Impact of channel thickness on the large-signal performance in InAlGaN/AlN/GaN HEMTs with an AlGaN back barrier,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 364-371, Jan. 2018, DOI: 10.1109/TED.2018.2881319 [35] P. S. Park and S. Rajan, “Simulation of short-channel effects in N-and Ga-polar AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 58, no.3, pp. 704-708, Mar. 2011, DOI: 10.1109/TED.2010.2099121 [36] J. Pinchbeck, K. B. Lee, S. Jiang, and P. Houston, “Dual metal gate AlGaN/GaN high electron mobility transistors with improved transconductance and reduced short channel effects,” Journal of Physics D, vol. 54, no. 10, p. 105104, Oct. 2020, DOI: 10.1088/1361-6463/abcb34 [37] T. Sato, K. Uryu, J. Okayasu, M. Kimishima, and T. K. Suzuki, “Suppression of drain-induced barrier lowering by double-recess overlapped gate structure in normally-off AlGaN-GaN MOSFETs,” Applied Physics Letters., vol. 113, no. 6, Aug. 2018, DOI: 10.1063/1.5039886 Chapter 6 [1] Z.H. Liu, C. Hu, J.H. Huang, T. Y. Chan, M.C. Jeng, P. K. Ko, Y. C. Cheng, "Threshold voltage model for deep-submicrometer MOSFETs,", IEEE Transactions on Electron Devices, vol. 40, no. 1, pp. 86-95, Jan. 1993. DOI: 10.1109/16.249429 [2] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, C. Hu, "Short-channel effect improved by lateral channel engineering in deep-submicrometer MOSFET's", IEEE Transactions on Electron Devices, vol. 44, pp. 627-633, Apr. 1997. DOI: 10.1109/16.753725 [3] H.K. Lim and J. G. Fossum, “Threshold voltage of thin-film siliconon-insulator (SOI) MOSFET’s,” IEEE Transactions on Electron Devices, vol. 30, no. 10, pp. 1244-1251, Oct. 1983. DOI: 10.1109/T-ED.1983.21282 [4] D. Hisamoto, W.C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET—A self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320-2325, Dec. 2000. DOI: 10.1109/16.887014 [5] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. T. Roeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging,” International Electron Devices Meeting, pp. 247-250, Dec. 2007. DOI: 10.1109/IEDM.2007.4418914 [6] C. Hu, S. C. Tam, F.C. Hsu, P.-K. Ko, T. Y. Chan, K. W. Terrill, "Hot-electron-induced MOSFET degradation—Model monitor and improvement," IEEE J. Solid-State Circuits, vol. 20, no. 1, pp. 295-305, Feb. 1985. DOI: 10.1109/JSSC.1985.1052306 [7] S. Tam, P. Ko, C. Hu, "Lucky-electron model of channel hot-electron injection in MOSFETs," IEEE Transactions on Electron Devices, vol. 31, pp. 1116-1125, Sep. 1984. DOI: 10.1109/T-ED.1984.21674 [8] S. E. Rauch, G. La Rosa, F. J. Guarin, "Role of E-E scattering in the enhancement of channel hot carrier degradation of deep-submicron NMOSFETs at high V/sub GS/ conditions," IEEE Transactions on Device and Materials Reliability, vol. 1, no. 2, pp. 113-119, Jun. 2001. [9] C. Guerin, V. Huard, A. Bravaix, "Hot-carrier damage from high to low voltage using the energy-driven framework," Microelectronic Engineering, vol. 84, no. 9/10, pp. 1938-1942, Sep. 2007. [10] C. Guerin, V. Huard, A. Bravaix, "General framework about defect creation at the Si/SiO 2 interface," Journal of Applied Physics., vol. 105, no. 11, pp. 114513-1-114513-12, Jun. 2009, DOI: 10.1063/1.3139285 [11] A. Simevski, “Architectural framework for dynamically adaptable multiprocessors regarding aging, fault tolerance, performance and power consumption,” Doctoral dissertation, BTU Cottbus-Senftenberg, 2014, DOI: 10.35940/ijitee.K1286.0981119 [12] K. C. Chang, J. C. Liao, T. C. Chang, C. H. Yeh, C. Y. Lin, F. Y. Jin, et al., "Abnormal relationship between hot carrier stress degradation and body current in high-K metal gate in the 14-nm node", IEEE Electron Device Letters., vol. 40, no. 4, pp. 498-501, Apr. 2019, DOI: 10.1109/LED.2019.2899630 [13] A. Bravaix, V. Huard, F. Cacho, X. Federspiel, D. Roy, T. Grasser, "Hot-carrier degradation in decananometer CMOS nodes: From an energy-driven to a unified current degradation modeling by a multiple-carrier degradation process," in Hot Carrier Degradation in Semiconductor Devices, Cham, Switzerland:Springer Int, pp. 57-103, Jan. 2014. DOI: 10.1007/978-3-319-08994-2__3 [14] P. Gaubert & A. Teramoto, “Carrier mobility in field-effect transistors. Different Types of Field-Effect Transistors-Theory and Applications”, Rijeka, Croatia, 1-23, 2017, DOI: 10.5772/67885 [15] A. Verma, A. Mishra, A. Jha & K. Verma, “Effect of High-K Oxide Layer on Carrier Mobility”, International J. of Advanced Research in Electrical Electronics and Instrumentation Engineering, vol. 3, no. 5, pp. 9667-9674, May 2014, DOI: 10.15662/IJAREEIE.2015.0409005 [16] H. Kosina & M. Kampl “Effect of electron-electron scattering on the carrier distribution in semiconductor devices”, International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) pp. 18-21, Sep 2018, DOI: 10.1109/SISPAD.2018.8551734 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-01-10 校外 Off-campus:開放下載的時間 available 2027-01-10 您的 IP(校外) 位址是 18.190.152.131 現在時間是 2025-05-21 論文校外開放下載的時間是 2027-01-10 Your IP address is 18.190.152.131 The current date is 2025-05-21 This thesis will be available to you on 2027-01-10. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-01-10 |
QR Code |