論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
基於自我注入鎖定都普勒雷達之胸戴式 心血管活動監測器 Chest-Worn Cardiovascular Activity Monitors Based on Self-Injection-Locked Doppler Radar |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
96 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-01-05 |
繳交日期 Date of Submission |
2023-01-12 |
關鍵字 Keywords |
自我注入鎖定都普勒雷達、自我注入鎖定振盪器標籤、標籤天線、超表面、傳輸陣列、生命徵象、心率變異、心音、穿戴式裝置 Self-injection-locked (SIL) Doppler radar, self-injection-locked oscillator (SILO) tag, tag antenna, metasurface, transmitarray, vital signs, heart rate variability, heart sounds, wearable device |
||
統計 Statistics |
本論文已被瀏覽 80 次,被下載 6 次 The thesis/dissertation has been browsed 80 times, has been downloaded 6 times. |
中文摘要 |
本博士論文研究使用胸戴式標籤的自我注入鎖定(SIL)都普勒雷達,用於監測可移動人員的心血管活動。本論文設計的胸戴式標籤有兩種類型-有源標籤和無源標籤,使用有源標籤的雷達操作在5.8 GHz,由自我注入鎖定振盪器(SILO)標籤及調頻接收機所組成。第一個SILO標籤天線設計使用了超表面,並且應用在生命徵象偵測,該天線包括頻率選擇面及電磁能帶隙面,用以抑制移動雜波並消除身體鄰近效應。第二個SILO標籤天線設計使用了互補開口環諧振器,能藉由近場感應來監測心率變異性。為了提高指向心臟區域的天線方向性,第三個SILO標籤天線設計使用了部分反射面,該反射面由開口環諧振器陣列所組成。此外,提出了結合總體經驗模態分解及主成份分析的演算法,以去除提取心跳訊號過程中呼吸和身體移動造成的干擾,從而準確估算心臟活動時序。為使SILO標籤小型化以方便不同聽診部位的心音測量,第四個SILO標籤天線採用環形天線和同心環的疊層結構設計,並應用隱半馬爾可夫模型來分割心音信號。最後,將傳輸陣列透鏡設計為無源標籤,將來自遠程5.8 GHz SIL都普勒雷達的入射波在透入胸部後能聚焦在心臟的特定區域,以利於長期心率變異監測。 |
Abstract |
This dissertation presents the use of self-injection-locked (SIL) Doppler radars with chest-worn tags for monitoring the cardiovascular activities of a mobile person. There are two types of chest-worn tags used in this research-active tag and passive tag. The radar using the active tag operates at 5.8 GHz and consists of a self-injection-locked oscillator (SILO) tag and a frequency modulation (FM) receiver. The first SILO tag antenna is designed using metasurfaces for vital-sign detection. This antenna comprises a frequency selective surface (FSS) and an electromagnetic bandgap (EBG) surface to reject the moving clutter and eliminate the body-proximity effect. The second SILO tag antenna is designed with a complementary split ring resonator (CSRR) for near-field sensing to monitor heart rate variability (HRV). To improve the antenna directivity towards the heart area, the third SILO tag antenna is designed with a partially reflective surface (PRS) that is composed of an array of split ring resonators (SRRs). Moreover, the combined ensemble empirical mode decomposition (EEMD) and principal component analysis (PCA) algorithm is proposed to remove respiratory and body motion artifacts in the extraction of the heartbeat signal, yielding accurate estimates of cardiac timings. To miniaturize the SILO tag for the convenience of measuring heart sounds at different auscultation sites, the fourth SILO tag antenna is designed using a stacked structure of a loop antenna and a concentric loop. Furthermore, a hidden semi-Markov model (HSMM) is applied to segment the heart sound signal. Finally, a transmitarray lens is designed as the passive tag to focus the incident wave from a remote 5.8 GHz SIL Doppler radar on a specific area of the heart via penetration into the chest for long-term HRV monitoring. |
目次 Table of Contents |
Contents 論文審定書 i 摘要 ii Abstract iii List of Figures vi List of Tables xi Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Remote Cardiovascular Activity Monitors 2 1.3 Wearable Cardiovascular Activity Monitors 4 1.4 Overview of Dissertation 6 Chapter 2 SIL Doppler Radar for Wearable Applications 8 2.1 Self-Injection-Locked Oscillator (SILO) Tag 8 2.2 Moving Clutter Rejection Using Circular Polarized Wave 11 2.3 Moving Clutter Rejection Using Signal Processing 15 2.3.1 Bandpass Filtering 15 2.3.2 Empirical Mode Decomposition 15 2.3.3 Variational Mode Decomposition 16 2.3.4 Variational Mode Extraction 19 2.3.5 Successive Variational Mode Decomposition 20 Chapter 3 Chest-Worn Heart Rate Variability Monitor 23 3.1 Tag Antenna Design 23 3.2 SILO Tag Implementation 30 3.3 Signal Processing and Results 32 Chapter 4 Chest-Worn Heart Sound Monitor 40 4.1 Human Heart Sound 40 4.2 SILO Tag Implementation 42 4.3 Signal Processing and Results 45 Chapter 5 Chest-Worn Transmitarray Lens for Remote HRV Monitoring 52 5.1 Transmitarray Lens Design and Test 53 5.2 HRV Monitoring Setup and Results 57 5.3 Comparison of Various Signal Processing Techniques 62 Chapter 6 Conclusion 71 Bibliography 73 Vita 83 |
參考文獻 References |
Bibliography [1] K. C. Bilchick, B. Fetics, R. Djoukeng, S. G. Fisher, R. D. Fletcher, S. N. Singh, E. Nevo, and R. D. Berger, “Prognostic value of heart rate variability in chronic congestive heart failure (Veterans affairs’ survival trial of antiarrhythmic therapy in congestive heart failure),” Amer. J. Cardiol., vol. 90, no. 1, pp. 24–28, Jul. 2002. [2] J. Mateo, P. Serrano, R. Bailon, J. Garcia, A. Ferreira, A. D. Rio, I. J. Ferreira, and P. Laguna, “Heart rate variability measurements during exercise test may improve the diagnosis of ischemic heart disease,” in Proc. Conf. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Istanbul, Turkey, Oct. 2002, pp. 503–506. [3] F. Sessa et al.,” Heart rate variability as predictive factor for sudden cardiac death,” Aging, Vol. 10. no. 2. pp. 166-177, Feb. 2018. [4] C. Puelacher et al., “Diagnostic value of ST-segment deviations during cardiac exercise stress testing: Systematic comparison of different ECG leads and time-points,” Int. J. Cardiol., vol. 238, pp. 166–172, Jul. 2017. [5] C. Lin et al., “Robust fetal heart beat detection via R-peak intervals distribution,” IEEE Trans. Biomed. Eng., vol. 66, no. 12, pp. 3310-3319, Dec. 2019. [6] G. A. Myers et al., “Power spectral analysis of heart rate varability in sudden cardiac death: comparison to other methods,” IEEE Trans. Biomed. Eng., vol. 33, no. 12, pp. 1149-1156, Dec. 1986. [7] J. G. Webster, Medical Instrumentation: Application and Design, 4th ed. New York, NY, USA: Wiley, 2009. [8] D. Bansal, M. Khan, and A. K. Salhan, “A review of measurement and analysis of heart rate variability,” 2009 Int. Conf. Comp. Automation Eng., Bangkok, Thailand, Mar. 2009, pp. 243-246. [9] S. Tiwari, A. Jain, A. K. Sharma, and K. M. Almustafa, “Phonocardiogram signal based multi-class cardiac diagnostic decision support system,” IEEE Access, vol. 9, pp. 110710-110722, Aug. 2021. [10] D. Marzorati, A. Dorizza, D. Bovio, C. Salito, L. Mainardi and P. Cerveri, “Hybrid convolutional networks for end-to-end event detection in concurrent PPG and PCG signals affected by motion artifacts,” IEEE Trans. Biomed. Eng., vol. 69, no. 8, pp. 2512-2523, Aug. 2022. [11] K. A. Babu, B. Ramkumar and M. S. Manikandan, “Automatic identification of S1 and S2 heart sounds using simultaneous PCG and PPG recordings,” IEEE Sensors J., vol. 18, no. 22, pp. 9430-9440, 15 Nov.15, 2018. [12] A. Hafid, S. Benouar, M. Kedir-Talha, F. Abtahi, M. Attari and F. Seoane, “Full impedance cardiography measurement device using raspberry PI3 and system-on-chip biomedical instrumentation solutions,” IEEE J. Biomed. Health Inf., vol. 22, no. 6, pp. 1883-1894, Nov. 2018. [13] X. Wang, H. H. Sun and J. M. V. De Water, “An advanced signal processing technique for impedance cardiography,” IEEE Trans. Biomed. Eng., vol. 42, no. 2, pp. 224-230, Feb. 1995. [14] A. O. Bicen, N. Z. Gurel, A. Dorier and O. T. Inan, “Improved pre-ejection period estimation from ballistocardiogram and electrocardiogram signals by fusing multiple timing interval features,” IEEE Sensors J., vol. 17, no. 13, pp. 4172-4180, Jul. 2017. [15] C. -S. Kim, A. M. Carek, R. Mukkamala, O. T. Inan and J. -O. Hahn, “Ballistocardiogram as proximal timing reference for pulse transit time measurement: potential for cuffless blood pressure monitoring,” IEEE Trans. Biomed. Eng., vol. 62, no. 11, pp. 2657-2664, Nov. 2015. [16] D. Shao, F. Tsow, C. Liu, Y. Yang and N. Tao, “Simultaneous monitoring of ballistocardiogram and photoplethysmogram using a camera,” IEEE Trans. Biomed. Eng., vol. 64, no. 5, pp. 1003-1010, May 2017. [17] A. Alivar et al., “Motion artifact detection and reduction in bed-based ballistocardiogram,” IEEE Access, vol. 7, pp. 13693-13703, 2019. [18] A. Temko, “Accurate heart rate monitoring during physical exercises using PPG,” IEEE Trans. Biomed. Eng., vol. 64, no. 9, pp. 2016-2024, Sep. 2017. [19] S. B. Song, J. W. Nam and J. H. Kim, “NAS-PPG: PPG-based heart rate estimation using neural architecture search,” IEEE Sensors J., vol. 21, no. 13, pp. 14941-14949, Jul. 2021. [20] G. N. K. Reddy, M. S. Manikandan and N. V. L. N. Murty, “Evaluation of objective distortion measures for automatic quality assessment of processed PPG signals for real-time health monitoring devices,” IEEE Access, vol. 10, pp. 15707-15745, Jan. 2022. [21] G. -S. Ryu et al., “Flexible and printed PPG sensors for estimation of drowsiness,” IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 2997-3004, Jul. 2018. [22] M. Rapczynski, P. Werner and A. Al-Hamadi, “Effects of video encoding on camera-based heart rate estimation,” IEEE Trans. Biomed. Eng., vol. 66, no. 12, pp. 3360-3370, Dec. 2019. [23] D. McDuff, S. Gontarek and R. W. Picard, “Improvements in remote cardiopulmonary measurement using a five bands digital camera,” IEEE Trans. Biomed. Eng., vol. 61, no. 10, pp. 2593-2601, Oct. 2014. [24] R. Favilla, V. C. Zuccalà, and G. Coppini, “heart rate and heart rate variability from single-channel video and ICA integration of multiple signals,” IEEE J. Biomed. Health Inf., vol. 23, no. 6, pp. 2398-2408, Nov. 2019. [25] D. Tang, V. G. R. Varela, D. V. Q. Rodrigues, D. Rodriguez and C. Li, “A wi-fi frequency band passive biomedical doppler radar sensor,” IEEE Trans. Microw. Theory Techn., pp. 1557-9670. Aug. 2022. [26] B. Yu et al., “WiFi-sleep: sleep stage monitoring using commodity wi-fi devices,” IEEE Internet of Things J., vol. 8, no. 18, pp. 13900-13913, Sep. 2021. [27] F. Adib, “Seeing with radio Wi-Fi-like equipment can see people through walls, measure their heart rates, and gauge emotions,” IEEE Spectrum, vol. 56, no. 6, pp. 34-39, Jun. 2019. [28] J. Bai, G. Sileshi, G. Nordehn, S. Burns, and L. Wittmers, “Development of laser-based heart sound detection system,” J. Biomed. Sci. Eng., vol. 5, no. 1, p. 34, 2012. [29] A. Humeau, G. Mahe, F. C. Blondeau, D. Rousseau and P. Abraham, “Multiscale analysis of microvascular blood flow: a multiscale entropy study of laser Doppler flowmetry time series,” IEEE Trans. Biomed. Eng., vol. 58, no. 10, pp. 2970-2973, Oct. 2011. [30] W. Lyu, W. Xu, F. Yang, S. Chen, F. Tan and C. Yu, “Non-invasive measurement for cardiac variations using a fiber optic sensor,” IEEE Photonics. Techn. Lett., vol. 33, no. 18, pp. 990-993, Sep. 2021. [31] T. Sakamoto, R. Imasaka, H. Taki, T. Sato, M. Yoshioka, K. Inoue, T. Fukuda, and H. Sakai, “Feature-based correlation and topological similarity for interbeat interval estimation using ultrawideband radar,” IEEE Trans. Biomed. Eng., vol. 63, no. 4, pp. 747-757, Apr. 2016. [32] K. -K. Shyu, L. -J. Chiu, P. -L. Lee, T. -H. Tung, and S. -H. Yang, “Detection of breathing and heart rates in UWB radar sensor data using FVPIEF-based two-layer EEMD,” IEEE Sensors J., vol. 19, no. 2, pp. 774-784, Jan. 2019. [33] K. -K. Shyu, L. -J. Chiu, P. -L. Lee, and L. -H. Lee, “UWB simultaneous breathing and heart rate detections in driving scenario using multi-feature alignment two-layer EEMD method,” IEEE Sensors J., vol. 20, no. 17, pp. 10251-10266, Sep. 2020. [34] J. R. Jauchem, M. R. Frei, K. L. Ryan, J. H. Merritt, and M. R. Murphy, “Lack of effects on heart rate and blood pressure in ketamine-anesthetized rats briefly exposed to ultra-wideband electromagnetic pulses,” IEEE Trans. Biomed. Eng., vol. 46, no. 1, pp. 117-120, Jan. 1999. [35] M. Le and B. V. Nguyen, “Multivariate correlation of higher harmonics for heart rate remote measurement using UWB impulse radar,” IEEE Sensors J., vol. 20, no. 4, pp. 1859-1866, Feb. 2020. [36] L. Ren, H. Wang, K. Naishadham, O. Kilic, and A. E. Fathy, “Phase-based methods for heart rate detection using UWB impulse Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 10, pp. 3319-3331, Oct. 2016. [37] E. Schires, P. Georgiou and T. S. Lande, “Vital sign monitoring through the back using an UWB impulse radar with body coupled antennas,” IEEE Trans. Biomed. Circuits Sys., vol. 12, no. 2, pp. 292-302, Apr. 2018. [38] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, “Noncontact multiple heartbeats detection, and subject localization using UWB impulse Doppler radar,” IEEE Microw. Wireless Comp. Lett., vol. 25, no. 10, pp. 690-692, Oct. 2015. [39] K. Naishadham, J. E. Piou, L. Ren, and A. E. Fathy, “Estimation of cardiopulmonary parameters from ultra wideband radar measurements using the state space method,” IEEE Trans. Biomed. Circuits Sys., vol. 10, no. 6, pp. 1037-1046, Dec. 2016. [40] W. Massagram, V. M. Lubecke, A. H. Madsen, and O. B. Lubecke, “Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp. 2542-2549, Oct. 2009. [41] P. Zheng, C. Zheng, X. Li, H. Chen, A. Wang, and Y. Luo, “Second harmonic weighted reconstruction for non-contact monitoring heart rate,” IEEE Sensors J., vol. 22, no. 6, pp. 5815-5823, Mar. 2022. [42] J. -Y. Shih and F. -K. Wang, “Quadrature cosine transform (QCT) with varying window length (VWL) technique for noncontact vital sign monitoring using a continuous-wave (CW) radar,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 3, pp. 1639-1650, Mar. 2022. [43] J. Tu and J. Lin, “Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique,” IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 112-122, Jan. 2016. [44] J. Park et al., “Polyphase-basis discrete cosine transform for real-time measurement of heart rate with CW Doppler radar,” IEEE Trans. on Microw. Theory Techn., vol. 66, no. 3, pp. 1644-1659, Mar. 2018. [45] M. Li and J. Lin, “Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar,” IEEE Trans. on Microw. Theory Techn., vol. 66, no. 1, pp. 568-576, Jan. 2018. [46] J. Liu, C. Gu, and J. Mao, “DC-independent high-linear motion sensing based on a novel ACAA algorithm,” IEEE Microw. Wireless Comp. Lett., vol. 32, no. 3, pp. 261-264, Mar. 2022. [47] M. Nosrati and N. Tavassolian, “High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train modeling and FTPR algorithm,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 556-567, Jan. 2018. [48] V. L. Petrovic, M. M. Jankovic, A. V. Lupsic, V. R. Mihajlovic, and J. S. P-. Bozovic, “High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar,” IEEE Access, vol. 7, pp. 74721–74733, 2019. [49] J. H. Lee and S. O. Park, “A 14 GHz non-contact radar system for long range heart rate detection,” in Proc. Int. Symp. Antennas Propag., Oct. 2014, pp. 204–206. [50] W. Hu, Z. Zhao, Y. Wang, H. Zhang, and F. Lin, “Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor,” IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 725–735, Mar. 2014. [51] J. Tu and J. Lin, “Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique,” IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 112–122, Jan. 2016. [52] M. Li and J. Lin, “Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 568–576, Jan. 2018. [53] K. Yamamoto, K. Toyoda, and T. Ohtsuki, “Spectrogram-based noncontact RRI estimation by accurate peak detection algorithm,” IEEE Access, vol. 6, pp. 60369–60379, 2018. [54] C. Will, K. Shi, S. Schellenberger, T. Steigleder, F. Michler, J. Fuchs, R. Wiegel, C. Ostgathe, and A. Koelpin, “Radar-based heart sound detection,” Sci. Rep., no. 8, pp. 11551, Jul. 2018. [55] K. Shi, S. Schellenberger, F. Michler, T. Steigleder, A. Malessa, F. Lurz, C. Ostgathe, R. Weigel, and A. Koelpin, “Automatic signal quality index determination of radar-recorded heart sound signals using ensemble classification,” IEEE Trans. Biomed. Eng., vol. 67, no. 3, pp. 773–785, Mar. 2020. [56] L. Wen, S. Dong, C. Gu and J.-F. Mao, “A compact non-contact heart sound sensor based on millimeter-wave radar,” in IEEE MTT-S Int. Microw. Biomed. Conf., Suzhou, China, May. 2022, pp. 305–307. [57] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2010, pp. 768-771. [58] C. -H. Tseng and Y. -H. Lin, “24-GHz self-injection-locked vital-sign radar sensor with CMOS injection-locked frequency divider based on push–push oscillator topology,” IEEE Microw. Wireless Comp. Lett., vol. 28, no. 11, pp. 1053-1055, Nov. 2018. [59] F. -K. Wang et al., "Review of self-injection-locked radar systems for noncontact detection of vital signs,” IEEE J. Electromagnetics RF Microw. Medicine Biol., vol. 4, no. 4, pp. 294-307, Dec. 2020. [60] M. -C. Tang, F. -K. Wang and T. -S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5324-5333, Dec. 2017. [61] M. -C. Tang, C. -Y. Kuo, D. -C. Wun, F. -K. Wang and T. -S. Horng, “A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation,” IEEE Trans. Microw. Theory Techn. vol. 64, no. 12, pp. 4812-4822, Dec. 2016. [62] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013. [63] Y. Yuan and C. -T. M. Wu, “Super-regenerative oscillator integrated metamaterial leaky wave antenna for multi-target vital sign and motion detection,” IEEE J. Electromagnetics RF Microw. Medicine Biol., vol. 6, no. 2, pp. 238-245, Jun. 2022. [64] S. Dong et al., “Doppler cardiogram: A remote detection of human heart activities,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1132–1141, Mar. 2020. [65] W. Xia, Y. Li, and S. Dong, “Radar-based high-accuracy cardiac activity sensing,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021. [66] C. Zhu et al., “Doppler cardiogram detected by a V-band Doppler radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 1, pp. 521–531, Jan. 2022. [67] J. E. Johnson, O. Shay, C. Kim, and C. Liao, “Wearable millimeterwave device for contactless measurement of arterial pulses,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1525–1534, Dec. 2019. [68] D. Buxi, E. Hermeling, M. Mercuri, F. Beutel, R. G. Westen, T. Torfs, J.-M. Redoute, and M. R. Yuce, “Systolic time interval estimation using continuous wave radar with on-body antennas, “IEEE J. Biomed. Health Inf., vol. 22, no. 1, pp. 129–139, Jan. 2018. [69] H. M. Aumann and N. W. Emanetoglu, “A radiating near-field 24 GHz radar stethoscope,” in 40th Annual Int. Conf. IEEE Eng. Medicine Biol. Soc., Honolulu, HI, USA, Jul. 2018, pp. 5121–5124. [70] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu, and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931-2940, Dec. 2015. [71] C.-Y. Hsu, L.-T. Hwang, F.-K. Wang, and T.-S. Horng, “Wearable vital sign sensor using a single-input multiple-output self-injectionlocked oscillator tag,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, USA, Jun. 2018, pp. 248-251. [72] C.-H. Tseng and C.-Z. Wu, “A novel microwave phased- and perturbation-injection-locked sensor with self-oscillating complementary split-ring resonator for finger and wrist pulse detection,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1933–1942, May 2020. [73] C.-Z. Wu and C.-H. Tseng, “A perturbation-injection-locked sensor with self-oscillating active CSRR for vital-sign detection from fingertip,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, Jun. 2019, pp. 369-372. [74] C.-H. Tseng, T.-J. Tseng, and C.-Z. Wu, “Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4865–4874, Nov. 2020. [75] R. E. Arif, M.-C. Tang, W.-C. Su, T.-S. Horng, F.-K. Wang and C.-H. Tseng, “Designing a metasurface-based tag antenna for wearable vital sign sensors,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, USA, Jun. 2019, pp. 373-376. [76] R. E. Arif, W.-C. Su, M.-C. Tang, T.-S. Horng, and F.-K. Wang, “Chest-worn self-injection-locked oscillator tag for monitoring heart rate variability,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 512–515. [77] R. E. Arif, W.-C. Su, and T.-S. Horng, “Chest-worn heart rate variability monitor with a self-injection-locked oscillator tag,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 5, pp. 2851–2860, May 2022. [78] W.-T. Chen and H.-R. Chuang, “Numerical computation of human interaction with arbitrarily oriented super quadric loop antennas in personal communications,” IEEE Trans. Antennas Propag., vol. 46, no. 6, pp. 821–828, Jun. 1998. [79] A. Singh and V. M. Lubecke, “Respiratory monitoring and clutter rejection using a CW Doppler radar with passive RF tags,” IEEE Sensors J., vol. 12, no. 3, pp. 558–565, Mar. 2012. [80] A. Mishra and C. Li, “A low power 5.8-GHz ISM-band intermodulation radar system for target motion discrimination,” IEEE Sensors J., vol. 19, no. 20, pp. 9206–9214, Oct. 2019. [81] W. McDonnell, A. Mishra and C. Li, “Comprehensive vital sign detection using a wrist wearable nonlinear target and a 5.8-GHz ISM band intermodulation radar,”in 2020 IEEE Radio Wireless Sym. (RWS), San Antonio, TX, USA. Jan. 2020, pp. 123-126. [82] S. K. Behera, “Chipless RFID sensors for wearable applications: a review,” IEEE Sensors J., vol. 22, no. 2, pp. 1105-1120, Jan. 2022. [83] W. Lee et al., “Single-layer phase gradient mmWave metasurface for incident angle independent focusing,” Sci. Rep., vol. 11, art. no. 12671, pp. 1-7, Jun. 2021. [84] J. S. Ho et al., “Planar immersion lens with metasurfaces,” Phys. Rev. B, vol. 91, no. 12. pp. 125 145–8, Mar. 2015. [85] C. G. M. Ryan, M. R. Chaharmir, J. Shaker, J. R. Bray, Y. M. M. Antar and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1486-1493, May 2010. [86] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1380–1385, Oct. 1973. [87] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011. [88] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005. [89] R. C. Jones. “A new calculus for the treatment of optical systems, I. Description and discussion of the calculus,” J. Opt. Soc. Am., vol. 31, no. 7, 488-493, Jul. 1941. [90] L. Ren, Y. S. Koo, Y. Wang, G. To, M. Mahfouz and A. E. Fathy, “High-amplitude motion cancellation method for handheld UWB Doppler radar,” in 2014 IEEE Topical Conf. Biomed. Wireless Techn. Network sensing Sys. (BioWireleSS), Newport Beach, CA, USA., Jun. 2014, pp. 10-12. [91] B. Zhao, Y. Lian, A. M. Niknejad and C. H. Heng, “A low-power compact IEEE 802.15.6 compatible human body communication transceiver with digital sigma–delta IIR mask shaping,” IEEE J. Solid-State Circuits, vol. 54, no. 2, pp. 346-357, Feb. 2019. [92] T. K. V. Dai, Y. Yu, P. Theilmann, A. E. Fathy and O. Kilic, “Remote vital sign monitoring with reduced random body swaying motion using heartbeat template and wavelet transform based on constellation diagrams,” IEEE J. Electromagnetics RF Microw. Medicine Biol., vol. 6, no. 3, pp. 429-436, Sept. 2022. [93] G. Zhao, Q. Liang and T. S. Durrani, “An EMD based sense-through-foliage target detection UWB radar sensor networks,” IEEE Access, vol. 6, pp. 29254-29261, May 2018. [94] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1–41, 2009. [95] R. E. Arif, W. -C. Su and T. -S. Horng, “A wearable oscillator tag for heart health monitoring,” in 2022 IEEE Int. Sym. Radio Freq. Integ. Techn. (RFIT), Busan, Republic of Korea. Aug. 2022, pp. 207-209. [96] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2014. [97] N. Rehman and D. P. Mandic, “Filter bank property of multivariate empirical mode decomposition,” IEEE Trans Signal Process., vol. 59, no. 5, pp. 2421–2426, May 2011. [98] M. Nazari and S. M. Sakhaei, “Variational mode extraction: A new efficient method to derive respiratory signals from ECG,” IEEE J. Biomed. Health Inf., vol. 22, no. 4, pp. 1059-1067, Jul. 2018. [99] M.A. Nazari, S.M. Sakhaei, “Successive variational mode decomposition,” Signal Process., Vol. 174, pp. 107610, Sep. 2020. [100] K.-L. Wong, C.-C. Huang, and W.-S. Chen, “Printed ring slot antenna for circular polarization,” IEEE Trans. Antennas Propag., vol. 50, no. 1, pp. 75–77, Jan. 2002. [101] J.-S. Row and S.-W. Wu, “Circularly-polarized wide slot antenna loaded with a parasitic patch,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2826–2832, Sep. 2008. [102] F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2258–2267, Aug. 2007. [103] G. Von Trentini, “Partially reflecting sheet arrays,” IRE Trans. Antennas Propag., vol. 4, no. 4, pp. 666–671, Oct. 1956. [104] S. Dong et al., “Doppler cardiogram: A remote detection of human heart activities,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1132–1141, Mar. 2020. [105] I. Mostafanezhad, E. Yavari, O. Boric-Lubecke, V. M. Lubecke, and D. P. Mandic, “Cancellation of unwanted Doppler radar sensor motion using empirical mode decomposition,” IEEE Sensors J., vol. 13, no. 5, pp. 1897–1904, May 2013. [106] C.-Y. Huang, G.-W. Fang, H.-R. Chuang, and C.-L. Yang, “Clutter resistant vital sign detection using amplitude-based demodulation by EEMD-PCA-correlation algorithm for FMCW radar systems,” in Proc. 49th Eur. Microw. Conf. (EuMC), Oct. 2019, pp. 928–931. [107] M. Nosrati and N. Tavassolian, “Accurate Doppler radar-based cardiopulmonary sensing using chest-wall acceleration,” EEE J. Electromagn., RF Microw. Med. Biol., vol. 3, no. 1, pp. 41–47, Mar. 2019. [108] Y. Ding, X. Yu, C. Lei, Y. Sun, X. Xu, and J. Zhang, “A novel realtime human heart rate estimation method for noncontact vital sign radar detection,” IEEE Access, vol. 8, pp. 88689–88699, 2020. [109] W. Massagram, V. M. Lubecke, A. Høst-Madsen, and O. Boric-Lubecke, “Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp. 2542–2549, Oct. 2009. [110] V. L. Petrovic, M. M. Jankovic, A. V. Lupšic, V. R. Mihajlovic, and J. S. Popovic, “High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar,” IEEE Access, vol. 7, pp. 74721–74733, 2019. [111] C. Ye, K. Toyoda, and T. Ohtsuki, “A stochastic gradient approach for robust heartbeat detection with Doppler radar using time-windowvariation technique,” IEEE Trans. Biomed. Eng., vol. 66, no. 6, pp. 1730–1741, Jun. 2019. [112] S. M. A. T. Hosseini and H. Amindavar, “A new Ka-band Doppler radar in robust and precise cardiopulmonary remote sensing,” IEEE Trans. Inst. Meas., vol. 66, no. 11, pp. 3012–3022, Nov. 2017. [113] W. Xia, Y. Li, and S. Dong, “Radar-based high-accuracy cardiac activity sensing,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021. [114] S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, no. 11, pp. 2271–2293, Nov. 1996. [115] D. B. Springer, L. Tarassenko, and G. D. Clifford, “Logistic regression-HSMM-based heart sound segmentation,” IEEE Trans. Biomed. Eng., vol. 63, no. 4, pp. 822–832, Apr. 2016. [116] M. Ngadi et al., “Dielectric properties of pork muscle,” Int. J. Food Properties, vol. 18, no.1, pp. 12-20, Sep. 2014. [117] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, “A complete ensemble empirical mode decomposition with adaptive noise,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jul. 2011, pp. 4144–4147. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |