論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2035-01-13
校外 Off-campus:開放下載的時間 available 2035-01-13
論文名稱 Title |
以銦及其合金作為覆晶封裝半導體散熱材料之研究 Research on Indium and Its Alloys as Thermal Interface Materials for Flip-Chip Packaged Semiconductors |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
111 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2025-01-07 |
繳交日期 Date of Submission |
2025-01-13 |
關鍵字 Keywords |
銦金屬、銦合金、熱界面材料、覆晶封裝半導體、界面反應、微觀結構 Indium metal, indium alloy, TIM, flip-chip semiconductor packaging, interfacial reactions, microstructure |
||
統計 Statistics |
本論文已被瀏覽 400 次,被下載 0 次 The thesis/dissertation has been browsed 400 times, has been downloaded 0 times. |
中文摘要 |
本研究探討了銦金屬及其合金在半導體封裝中的應用潛力,特別是作為熱界面材料(thermal interface material,TIM)的優勢。銦因其卓越的導熱性和柔韌性,被認為是理想的散熱材料。本研究重點圍繞以下三個方向: 第一個方向為材料與製程選擇:純銦相較於銦合金,能形成更完整且均勻的介面金屬共化物(intermetallic compound,IMC)層。純銦的高金屬純度和穩定微觀結構促進了界面處的均勻分布,減少缺陷,提升接合可靠性,降低應力集中與失效風險,並提高長期穩定性。第二個方向為微觀結構分析:通過多種儀器對銦金屬及其合金與基板(Si/Ti/NiV/Au)間的界面反應進行分析,發現 Ni₃In₇ 和 Cu₁₁In₉ 是最穩定的金屬間化合物,對接合強度與可靠性起到關鍵作用。第三個方向為可靠度測試:在 Cu/In(Ag)/Si 結構中,使用離子研磨技術觀察橫截面。結果顯示,未經溫度循環的銦合金樣品結構穩定且無裂痕,而經過溫度循環後,樣品出現裂痕,結構穩定性降低。 本研究證實了銦金屬及其合金在半導體封裝中的應用具有顯著潛力。不僅展現出優異的熱傳導性能,還能顯著提升高功率電子產品的散熱效率。同時,研究得到的實驗數據,有助於進一步優化半導體封裝的散熱管理。 |
Abstract |
This study explores the potential of indium and its alloys in semiconductor packaging, focusing on their advantages as thermal interface materials (TIMs). Indium's excellent thermal conductivity and flexibility make it an ideal heat dissipation material. The research emphasizes three areas: Material and Process Optimization: Pure indium forms more uniform intermetallic compound (IMC) layers than its alloys, enhancing bonding reliability and reducing defects. Microstructure Analysis: Ni₃In₇ and Cu₁₁In₉ are identified as stable IMCs crucial for bonding strength and reliability. Reliability Testing: Before temperature cycling, indium alloys show stable, crack-free structures. However, cycling induces cracks, reducing stability. The findings confirm indium's potential to improve thermal management in high-power electronics by enhancing heat dissipation efficiency and ensuring long-term stability. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖次 x 表次 xiv 第一章 緒論 1 1.1研究背景 1 1.2研究動機及目的 2 第二章 文獻回顧 3 2.1 覆晶接合封裝 3 2.1.1 Flip Chip覆晶接合製程 4 2.1.2 Underfill 底部填充製程 5 2.2 半導體電子構裝的散熱議題 6 2.2.1 熱管理的類型 6 2.2.2 散熱材料的性質 8 2.2.3 散熱材料的種類 9 2.3銦片的基本性質介紹 12 2.3.1 銦片的規格及參數 12 2.3.2 銦片的應用介紹 13 2.3.3 銦片在半導體產業中的優勢 13 2.4 銦氧化層的生成 15 2.4.1 無助焊劑銦的焊接性實驗程序 15 2.4.2 銦氧化物對無助焊劑焊接性及回流的影響 16 2.4.3 潤濕角的重要性: 16 2.4.4 銦的原生氧化物與熱處理氧化物的區別 17 2.5金屬元素的耦合效應 19 2.5.1 Cu/In/Ni界面上的Cu₁₁In₉相和Ni₃In₇相 19 2.5.2 反應時間對微結構的影響 20 2.6金屬間化合物的生長動力學 22 2.6.1 液態/固態反應與固態/固態反應中的IMC差異 22 2.6.2 Ni(V)層的角色與轉化機制 23 2.6.3 IMC對界面性能及生長動力學的影響 23 2.6.4 高溫環境下IMC的生長和剝落對界面結構的影響 25 2.6.5 Ni-V-In相的形成機制 25 2.7新興散熱材料探索 27 2.7.1 低熔點合金在TIM中的應用 27 2.7.2 定向凝固技術在TIM研究中的應用 31 2.7.3 低熔點合金的未來展望 31 第三章 研究方法說明 32 3.1 研究計畫及目標 32 3.2 TIM散熱片製程 33 3.2.1 Pre-attached indium (預附銦層製程) 33 3.2.2 Indium preform (銦片預製製程) 34 3.3可靠度測試 35 3.3.1溫度循環試驗 35 3.3.2 JESD22-A104溫度循環標準 36 3.4截面製備及方法 37 3.4.1四大切片手法 38 3.4.2離子研磨技術 38 3.4.3離子研磨技術種類 39 3.5實驗樣品 41 3.5.1 Cu-In-Cu樣品 41 3.5.2 PTIM樣品 41 3.5.3 STIM(w/Flux) 樣品 42 3.6實驗方法 43 3.6.1 銦片與助焊劑反應實驗 43 3.6.2 Cu-In-Cu接合反應實驗 43 3.6.3 PTIM接合反應實驗 44 3.6.4 STIM(w/Flux) 接合反應實驗 44 3.7分析儀器 45 3.7.1 X射線光電子能譜儀(XPS,X-ray Photoelectron Spectroscopy) 45 3.7.2 X射線繞射儀(GIXRD, Grazing Incident X-ray Diffraction) 46 3.7.3 掃描式電子顯微鏡(SEM, Scanning Electron Microscope) 47 3.7.4 電子能量分散式光譜儀(EDS,Energy Dispersive Spectrometers) 48 3.7.5 高解析電子微探儀(EPMA,Electron Probe MicroAnalyzer) 49 第四章 研究結果及討論 50 4.1銦片與助焊劑反應結果分析 50 4.1.1 XPS縱深分析 50 4.1.2 SEM及EDS分析 51 4.1.3 GIXRD低掠角分析 53 4.2 CU-IN-CU接合反應結果分析 56 4.2.1 SAT分析 56 4.2.2 SEM及EDS分析 56 4.2.3 EPMA分析 60 4.3 PTIM (T0) 接合反應結果分析 62 4.3.1 SAT分析 62 4.3.2 SEM及EDS分析 62 4.3.3 EPMA分析 65 4.4 PTIM (TCG200) 接合反應結果分析 69 4.4.1 SAT分析 69 4.4.2 SEM及EDS分析 70 4.4.3 EPMA分析 73 4.5 STIM(W/FLUX) 接合反應結果分析 82 4.5.1 SAT分析 82 4.5.2 SEM及EDS分析 82 4.5.3 EPMA分析 85 第五章 結論 89 5.1實驗總結 89 5.2未來展望 90 參考文獻 91 |
參考文獻 References |
[1]J.H. Lau, Status and outlooks of flip chip technology, Materials Science 1 (2017) 1-16. [2]I.C. Ume, T. Martin, J.T. Gatro, Finite element analysis of PWB warpage due to the solder masking process, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A 20 (1997) 295-306.. [3]Z. Zhang, C.P. Wong, Recent advances in flip-chip underfill: materials, process, and reliability, IEEE Transactions on Advanced Packaging 27 (2004) 515-524. [4]B. Kim, J. Sung, Capillary-driven Micro Flows for the Underfill Process in Microelectronics Packaging, J. of Mechanical Science and Tech. 26 (2012) 3751-3759. [5]T. Jensen, R. Lasky, The basics of metal thermal interface materials (TIMs), in: 2020 Pan Pacific Microelectronics Symposium (Pan Pacific) (2020) IEEE, pp. 1-9. [6]R. Bahru, M.F.M.A. Zamri, A.H. Shamsuddin, N. Shaari, M.A. Mohamed, A review of thermal interface material fabrication method toward enhancing heat dissipation, International Journal of Energy Research 45 (2021) 3548-3568. [7]劉彥群(2018)。功率模組用導熱封裝材料發展趨勢。工業材料雜誌,380期。 [8]徐振庭(2018)。界面導熱散熱材料發展現況。材料世界網。 [9]洪昌霖(2021)。碳基材料在熱管理中的應用研究。電子材料學報,32(5),678-685。 [10]陳建華(2020)。石墨烯複合材料的熱導性研究。材料研究學報,38(4),923-930。 [11]王文海(2019)。高效能散熱材料的發展趨勢。工業材料雜誌,357期,102-108。 [12]Indium Corporation of America,TIM Application,June 28, 2021 [13]J. Kim, H. Schoeller, J. Cho, S. Park, Effect of oxidation on indium solderability, Journal of Electronic Materials 37 (2008) 483-489. [14]Z. Lin, J. Chen, Formation and Evolution of Intermetallic Compounds in Cu/In/Ni Interfaces at High Temperature, IEEE Transactions on Components, Packaging and Manufacturing Technology 9(3) (2019) 441-448. [15]S. K. Lin, Y. H. Wang, H. C. Kuo, Strong coupling effects during Cu/In/Ni interfacial reactions at 280°C, Intermetallics 58 (2015) 91-97. [16]Y. S. Chiu, H. Y. Yu, H. T. Hung, Y. W. Wang, C. R. Kao, Phase formation and microstructure evolution in Cu/In/Cu joints, Microelectronics Reliability 95 (2019) 18-27. [17]M. I. I. Ramli, M. A. A. M. Salleh, M. M. A. B. Abdullah, N. S. M. Zaimi, A. V. Sandu, P. Vizureanu, ... & S. F. M. Amli, Formation and growth of intermetallic compounds in lead-free solder joints: a review, Materials 15 (2022) 1451. [18]B. C. Rao, J. Weng, L. Shen, T. K. Lee, K. Y. Zeng, Morphology and mechanical properties of intermetallic compounds in SnAgCu solder joints, Microelectronic Engineering 87 (2010) 2416-2422. [19]L. C. Huang, Y. P. Zhang, C. M. Chen, L. Y. Hung, Y. P. Wang, Intermetallic compound formation and growth behavior at the interface between indium and Au/Ni (V) metallization, Materials Characterization 184 (2022) 111673. [20]Y. W. Wang, Phase characterization of interfacial reactions in the Ni/In/Cu ternary system, Journal of Materials Science: Materials in Electronics 32 (2021) 4205-4213. [21]K. R. Hassan, M. S. Alam, J. Wu, J. C. Suhling, P. Lall, Microstructural evolution of SAC305 BGA joints during extreme high temperature aging, in: 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE, (2020), pp. 1201-1210. [22]X. Li, J. Xing, X. Chen, J. Yao, H. Ma, Effect of Cu content in the Ni-Cu under-bump metallurgy on the interfacial reaction between Ni₁₋ₓCuₓ and Sn solder, in: 2023 24th International Conference on Electronic Packaging Technology (ICEPT), IEEE, (2023), pp. 1-5.. [23]M.I.I. Ramli, M.A.A.M. Salleh, M.M.A.B. Abdullah, N.S.M. Zaimi, A.V. Sandu, P. Vizureanu, ... & S.F.M. Amli, Formation and growth of intermetallic compounds in lead-free solder joints: a review, Materials 15 (2022) 1451. [24]L.C. Huang, Y.P. Zhang, C.M. Chen, L.Y. Hung, Y.P. Wang, Intermetallic compound formation and growth behavior at the interface between indium and Au/Ni (V) metallization, Materials Characterization 184 (2022) 111673. [25]V. Jayaram, O. Gupte, K. Bhangaonkar, C. Nair, A review of low-temperature solders in microelectronics packaging, IEEE Transactions on Components, Packaging and Manufacturing Technology 13 (2023) 570-579. [26]T. Soares, C. Cruz, A. Barros, A. Garcia, N. Cheung, Microstructure growth morphologies, macrosegregation, and microhardness in Bi–Sb thermal interface alloys, Advanced Engineering Materials 22 (2020) 1901592. [27]C.H. Chen, C.L. Yang, T.H. Chuang, Intermetallic growth and thermal impedance at the In32.5Bi16.5Sn/Cu interface, Journal of Alloys and Compounds 936 (2023) 168309. [28]S.S. Too, M. Touzelbaev, M. Khan, R. Master, J. Diep, K.H. Keok, Indium thermal interface material development for microprocessors, in: 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, IEEE, (2009), pp. 186-192. [29]江志宏。溫度循環與溫度衝擊試驗依據規範進行待測品表溫控制(JEDEC22-A104、AEC-Q100、LV124、ED-4702A)。 [30]JEDEC Solid State Technology Association, JESD22-A104-B Standard, July 2000. [31]S. Razmyar, N. Lay, K. Rahim, Reliability assessment of indium micro bumps for 2.5 D/3D electronic packaging through cryo-argon milling technique, Journal of Microelectronics and Electronic Packaging 21 (2024) 1-8. [32]Kctech(2023)。截面觀察:如何挑選IC切片手法,找出半導體失效原因。 [33]周佳樂/校閱:葉旺奇教授。X射線光電子能譜儀操作手冊(X-ray Photoelectron Spectrometer,XPS)。國立東華大學奈米科技研究中心(Nano Core Facilities Laboratory)。 [34]潘扶民。XPS 超薄薄膜分析(Ultra-Thin Film Analysis by Angled Resolved X-Ray Photoelectron Spectroscopy)。半導體材料分析技術專題。 [35]蘇柏榕。高強度多功能X光薄膜微區繞射儀(XRD)訓練教材。成大核心設施中心。 [36]羅聖全(2013)。科學基礎研究之重要利器—掃描式電子顯微鏡(SEM)。科學研習,52(5)。 [37]施慧蓉。高解析掃描電子顯微鏡訓練教材。成大核心設施中心。 [38]益弘儀器股份有限公司。HORIBA EMAX-ENERGY EVO能量分散式X -ray 元素分析儀簡易操作手冊(VERSION 1.1)。 [39]杜正恭、王凱正、蔡淑月(年)。電子微探儀。科儀新知,30(6),98-106。 [40]J. Kim, H. Schoeller, J. Cho, S. Park, Effect of oxidation on indium solderability, Journal of Electronic Materials 37 (2008) 483-489. [41]Z. Bahari, E. Dichi, B. Legendre, J. Dugué, The equilibrium phase diagram of the copper–indium system: a new investigation, Thermochimica Acta 401 (2003) 131-138. [42]Y.H. Tseng, M.S. Yeh, T.H. Chuang, Interfacial reactions between liquid indium and nickel substrate, Journal of Electronic Materials 28 (1999) 105-108. [43]R.I. Made, C.L. Gan, C. Lee, L.L. Yan, A. Yu, S.W. Yoon, J.H. Lau, Study of Ag-In solder as low temperature wafer bonding intermediate layer, in: Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VII, SPIE 6884 (2008) 156-164. [44]Y. Zhao, et al., Low-Temperature Bonding of Indium Solder for High-Power Devices, IEEE Transactions on Components, Packaging and Manufacturing Technology 9 (2019) 1354-1360. [45]S. Jin, M.S. Kim, S. Kanayama, H. Nishikawa, Microstructure and mechanical properties of indium–bismuth alloys for low melting-temperature solder, Journal of Materials Science: Materials in Electronics 29 (2018) 16460-16468. [46]T.T. Dorini, L.T. Eleno, Thermodynamic reassessment of the Ni–In system using ab-initio data for end-member compound energies, Calphad 62 (2018) 42-48. [47]Y.W. Lee, T.K. Lee, J.P. Jung, Intermediate low-melting-temperature solder thermal cycling enhancement using bismuth and indium microalloying, Journal of Electronic Materials 52 (2023) 810-818. [48]A.K. Gain, L. Zhang, M.Z. Quadir, Thermal aging effects on microstructures and mechanical properties of an environmentally friendly eutectic tin-copper solder alloy, Materials & Design 110 (2016) 275-283.. [49]Y.C. Sohn, Q. Wang, S.J. Ham, B.G. Jeong, K.D. Jung, M.S. Choi, ... & C.Y. Moon, Wafer-level low temperature bonding with Au-In system, in: 2007 Proceedings 57th Electronic Components and Technology Conference, IEEE (2007), pp. 633-637. [50]M. Deshpande, R. Chaudhari, P.R. Narayanan, H. Kale, Evaluation of shear properties of indium solder alloys for cryogenic applications, Journal of Materials Engineering and Performance 30 (2021) 7958-7966. [51]J.A. Depiver, S. Mallik, D. Harmanto, Solder joint failures under thermo-mechanical loading conditions–A review, Advances in Materials and Processing Technologies 7(1) (2021) 1-26. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2035-01-13 校外 Off-campus:開放下載的時間 available 2035-01-13 您的 IP(校外) 位址是 216.73.216.54 現在時間是 2025-06-14 論文校外開放下載的時間是 2035-01-13 Your IP address is 216.73.216.54 The current date is 2025-06-14 This thesis will be available to you on 2035-01-13. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2030-01-13 |
QR Code |