Responsive image
博碩士論文 etd-0019125-044128 詳細資訊
Title page for etd-0019125-044128
論文名稱
Title
以S-O-R理論結合關係品質探討生成式聊天機器人對話語氣對使用者忠誠度之影響
Exploring the Impact of Conversational Tone in Generative Chatbots on User Loyalty: An Integration of S-O-R Theory and Relationship Quality
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-06-07
繳交日期
Date of Submission
2025-01-19
關鍵字
Keywords
關係品質、對話語氣、忠誠度、ChatGPT、生成式聊天機器人
Relationship Quality, Conversational Tone, Loyalty, ChatGPT, Generative Chatbot
統計
Statistics
本論文已被瀏覽 162 次,被下載 35
The thesis/dissertation has been browsed 162 times, has been downloaded 35 times.
中文摘要
現今科技的迅速發展,人工智慧AI的應用已在各行各業中普及。其中,聊天機器人已成為許多行業的最佳輔助工具,在現代科技和商業中扮演著重要角色,透過模擬人類對話為使用者提供快速便捷的服務與即時的互動體驗。聊天機器人是一種基於AI技術的軟體,能夠透過文字或語音與人類進行模擬對話,常見於企業網站、社群媒體及即時通訊系統中。其優勢在於能夠自動執行簡單、重複的任務,並可同時處理大量查詢,減少人工成本,另外也能夠快速回應使用者需求,這些優勢使得聊天機器人成為提升企業競爭力和使用者忠誠度的重要工具,因而被廣泛應用於各個產業,提供更便利的服務。

在2022年底,基於生成式AI的聊天機器人迅速崛起,尤其是由OpenAI開發的ChatGPT成為熱門話題。生成式AI能創造新內容並提供想法,包括對話、故事、圖像等。ChatGPT憑藉其強大的資料庫和運算模型,能夠即時理解並回應使用者需求,且支持多國語言,廣受歡迎。與傳統聊天機器人不同,ChatGPT能保留對話紀錄並根據需求改變對話方式與內容,在最新的更新版本GPT-4o中則提供了更客製化的應答方式,ChatGPT能夠採用不同對話語氣。然而,目前對ChatGPT這類生成式聊天機器人的研究甚少,因此在本研究中主要探討當生成式聊天機器人使用不同口吻與人對談時,對使用者而言的感知與影響為何,根據研究結果顯示,使用正式口吻的ChatGPT相較於使用非正式口吻,更能提高使用者對ChatGPT可靠度的感知,同時增加與ChatGPT間的關係品質,最終提高使用者對ChatGPT的忠誠度。
Abstract
With the rapid advancement of technology, the application of artificial intelligence (AI) has become widespread across various industries. Among these, chatbots have emerged as essential tools, playing a significant role in modern technology and business by simulating human conversations to provide users with quick and convenient services and real-time interactive experiences. Chatbots, based on AI technology, engage in simulated conversations through text or voice and are commonly found on corporate websites, social media, and instant messaging systems. Their advantages include automating simple, repetitive tasks, handling large volumes of inquiries simultaneously, and reducing labor costs. Additionally, they can quickly respond to user needs, making them crucial tools for enhancing corporate competitiveness and user loyalty, thus being widely adopted across various industries to offer more convenient services.

At the end of 2022, generative AI-based chatbots rapidly rose to prominence, with OpenAI's ChatGPT becoming a hot topic. Generative AI can create new content and ideas, including conversations, stories, and images. ChatGPT, with its powerful database and computational models, can understand and respond to user needs in real-time, supporting multiple languages and gaining widespread popularity. Unlike traditional chatbots, ChatGPT can retain conversation records and adjust its conversational style and content based on user needs. The latest version, GPT-4o, offers more personalized responses and can adopt different conversational tones. However, there is currently limited research on generative chatbots like ChatGPT. Therefore, this study explores how users perceive and are affected when generative chatbots use different conversational tones. The results indicate that ChatGPT, when using a formal tone, is perceived as more reliable by users compared to using an informal tone. This perception enhances the relationship quality between users and ChatGPT, ultimately increasing user loyalty to ChatGPT.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖次 vii
表次 viii
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究問題與目的 3
第四節 研究方法與流程 4
第二章 文獻探討 5
第一節 生成式聊天機器人 5
第二節 刺激-有機體-反應理論(S-O-R理論) 6
第三節 人格特質 7
第四節 關係品質 9
第三章 研究方法 10
第一節 研究模型 10
第二節 研究假說 11
第三節 操作型定義 13
第四節 研究設計 15
第四章 資料分析 19
第一節 受測樣本之基本資料分析 19
第二節 衡量模型 20
第三節 結構模型及假說驗證 31
第五章 研究結論與建議 33
第一節 研究分析結果與建議 33
第二節 理論與實務意涵 34
第三節 研究限制與未來發展 35
參考文獻 36
附錄一 本研究正式問卷 40
附錄二 本研究之受測情境畫面 45

參考文獻 References
A. Dion, P., Javalgi, R., & Dilorenzo-Aiss, J. (1998). An empirical assessment of the Zeithaml, Berry and Parasuraman service expectations model. Service Industries Journal, 18(4), 66-86.
Aaker, J. L. (1997). Dimensions of brand personality. Journal of Marketing Research, 34(3), 347-356.
Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427-445.
Allbeck, J., & Badler, N. (2002). Toward representing agent behaviors modified by personality and emotion. Embodied conversational agents at AAMAS, 2(6).
Allen, N. J., & Meyer, J. P. (1990). The measurement and antecedents of affective, continuance and normative commitment to the organization. Journal of occupational psychology, 63(1), 1-18.
Amiri, P., & Karahanna, E. (2022). Chatbot use cases in the Covid-19 public health response. Journal of the American Medical Informatics Association, 29(5), 1000-1010.
Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473.
Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115.
Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809-825.
Chang, H. H., Wong, K. H., & Li, S. Y. (2017). Applying push-pull-mooring to investigate channel switching behaviors: M-shopping self-efficacy and switching costs as moderators. Electronic commerce research and applications, 24, 50-67.
Cheng, X., Zhang, X., Cohen, J., & Mou, J. (2022). Human vs. AI: Understanding the impact of anthropomorphism on consumer response to chatbots from the perspective of trust and relationship norms. Information Processing & Management, 59(3), 102940.
Choi, Y. K., Miracle, G. E., & Biocca, F. (2001). The effects of anthropomorphic agents on advertising effectiveness and the mediating role of presence. Journal of Interactive Advertising, 2(1), 19-32.
Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595.
Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539-548.
Cox, S. R., & Ooi, W. T. (2022). Does Chatbot Language Formality Affect Users’ Self-Disclosure? Proceedings of the 4th Conference on Conversational User Interfaces,
Crosby, L. A., Evans, K. R., & Cowles, D. (1990). Relationship quality in services selling: an interpersonal influence perspective. Journal of marketing, 54(3), 68-81.
De Wulf, K., Odekerken-Schröder, G., & Iacobucci, D. (2001). Investments in consumer relationships: A cross-country and cross-industry exploration. Journal of marketing, 65(4), 33-50.
Delbaere, M., McQuarrie, E. F., & Phillips, B. J. (2011). Personification in advertising. Journal of Advertising, 40(1), 121-130.
Deng, L., Turner, D. E., Gehling, R., & Prince, B. (2010). User experience, satisfaction, and continual usage intention of IT. European Journal of Information Systems, 19(1), 60-75.
Deuter, K., Procter, N., & Rogers, J. (2013). The emergency telephone conversation in the context of the older person in suicidal crisis. Crisis.
Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E., & Lim, K. H. (2014). Trust, satisfaction, and online repurchase intention. MIS quarterly, 38(2), 407-A409.
Feine, J., Morana, S., & Gnewuch, U. (2019). Measuring service encounter satisfaction with customer service chatbots using sentiment analysis.
Fletcher, G. J., Simpson, J. A., & Thomas, G. (2000). Ideals, perceptions, and evaluations in early relationship development. Journal of personality and social psychology, 79(6), 933.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Garbarino, E., & Johnson, M. S. (1999). The different roles of satisfaction, trust, and commitment in customer relationships. Journal of marketing, 63(2), 70-87.
Go, E., & Sundar, S. S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304-316.
Gwinner, K. P., Gremler, D. D., & Bitner, M. J. (1998). Relational benefits in services industries: the customer’s perspective. Journal of the Academy of Marketing Science, 26, 101-114.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
Haque, M. R., & Rubya, S. (2023). An Overview of Chatbot-Based Mobile Mental Health Apps: Insights From App Description and User Reviews. JMIR mHealth and uHealth, 11(1), e44838.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems, 116(1), 2-20.
Holtgraves, T. (2011). Text messaging, personality, and the social context. Journal of research in personality, 45(1), 92-99.
Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: an introduction to voice assistants. Medical reference services quarterly, 37(1), 81-88.
Hsu, C.-L., & Lin, J. C.-C. (2015). What drives purchase intention for paid mobile apps?–An expectation confirmation model with perceived value. Electronic commerce research and applications, 14(1), 46-57.
Jiao, W., Wang, W., Huang, J.-t., Wang, X., Shi, S., & Tu, Z. (2023). Is ChatGPT a good translator? Yes with GPT-4 as the engine. arXiv preprint arXiv:2301.08745.
John, O. P., & Srivastava, S. (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives.
Karri, S. P. R., & Kumar, B. S. (2020). Deep learning techniques for implementation of chatbots. 2020 International conference on computer communication and informatics (ICCCI),
Kwiatek, P., Morgan, Z., & Thanasi-Boçe, M. (2020). The role of relationship quality and loyalty programs in building customer loyalty. Journal of Business & Industrial Marketing, 35(11), 1645-1657.
Kwiatek, P., & Thanasi-Boçe, M. (2019). Loyalty program activity: make B2B customers buy more. Marketing Intelligence & Planning, 37(5), 542-554.
Lee, K. M., & Nass, C. (2003). Designing social presence of social actors in human computer interaction. Proceedings of the SIGCHI conference on Human factors in computing systems,
Mairesse, F., Walker, M. A., Mehl, M. R., & Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of artificial intelligence research, 30, 457-500.
McRorie, M., Sneddon, I., de Sevin, E., Bevacqua, E., & Pelachaud, C. (2009). A model of personality and emotional traits. Intelligent Virtual Agents: 9th International Conference, IVA 2009 Amsterdam, The Netherlands, September 14-16, 2009 Proceedings 9,
McTear, M. F., Callejas, Z., & Griol, D. (2016). The conversational interface (Vol. 6). Springer.
Mehrabian, A., & Russell, J. A. (1974). The basic emotional impact of environments. Perceptual and motor skills, 38(1), 283-301.
Moorman, C., Zaltman, G., & Deshpande, R. (1992). Relationships between providers and users of market research: The dynamics of trust within and between organizations. Journal of Marketing Research, 29(3), 314-328.
Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of marketing, 58(3), 20-38.
Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook, 97-146.
Oliver, R. L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of consumer research, 20(3), 418-430.
Pansari, A., & Kumar, V. (2017). Customer engagement: the construct, antecedents, and consequences. Journal of the Academy of Marketing Science, 45, 294-311.
Parasuraman, A., Berry, L. L., & Zeithaml, V. A. (1991). Understanding customer expectations of service. MIT sloan management review.
Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. MIS quarterly, 623-656.
Ping Jr, R. A. (1993). The effects of satisfaction and structural constraints on retailer exiting, voice, loyalty, opportunism, and neglect. Journal of retailing, 69(3), 320-352.
Press, G. (2019). AI Stats News: Chatbots Increase Sales By 67% But 87% Of Consumers Prefer Humans. Forbes. In.
Rönkkö, M., & Ylitalo, J. (2011). PLS marker variable approach to diagnosing and controlling for method variance.
Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust. Journal of personality.
Ruane, E., Farrell, S., & Ventresque, A. (2021). User perception of text-based chatbot personality. Chatbot Research and Design: 4th International Workshop, CONVERSATIONS 2020, Virtual Event, November 23–24, 2020, Revised Selected Papers 4,
Rusbult, C. E. (1980). Commitment and satisfaction in romantic associations: A test of the investment model. Journal of experimental social psychology, 16(2), 172-186.
Schurr, P. H., & Ozanne, J. L. (1985). Influences on exchange processes: Buyers' preconceptions of a seller's trustworthiness and bargaining toughness. Journal of consumer research, 11(4), 939-953.
Shahzad, M. F., Xu, S., An, X., & Javed, I. (2024). Assessing the impact of AI-chatbot service quality on user e-brand loyalty through chatbot user trust, experience and electronic word of mouth. Journal of Retailing and Consumer Services, 79, 103867.
Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14-24.
Stern, B. B. (1997). Advertising intimacy: Relationship marketing and the services consumer. Journal of Advertising, 26(4), 7-19.
Sun, L. B., & Qu, H. (2011). Is there any gender effect on the relationship between service quality and word-of-mouth? Journal of Travel & Tourism Marketing, 28(2), 210-224.
Sung, K. H., & Kim, S. (2021). Do organizational personification and personality matter? The effect of interaction and conversational tone on relationship quality in social media. International Journal of Business Communication, 58(4), 582-606.
Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology Theory and Application (JITTA), 11(2), 2.
Watson, G. F., Beck, J. T., Henderson, C. M., & Palmatier, R. W. (2015). Building, measuring, and profiting from customer loyalty. Journal of the Academy of Marketing Science, 43, 790-825.
Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of experimental social psychology, 52, 113-117.
Wood, J. A. (2008). The effect of buyers' perceptions of environmental uncertainty on satisfaction and loyalty. Journal of Marketing theory and Practice, 16(4), 309-320.
Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136.
Yang, C., & Hu, J. (2022). When do consumers prefer AI-enabled customer service? The interaction effect of brand personality and service provision type on brand attitudes and purchase intentions. Journal of Brand Management, 29(2), 167-189.
Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1993). The nature and determinants of customer expectations of service. Journal of the Academy of Marketing Science, 21, 1-12.
Zhang, J., Zhu, Y., Wu, J., & Yu-Buck, G. F. (2023). A natural apology is sincere: Understanding chatbots' performance in symbolic recovery. International Journal of Hospitality Management, 108, 103387.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code