Responsive image
博碩士論文 etd-0027124-125443 詳細資訊
Title page for etd-0027124-125443
論文名稱
Title
整數型與分數型相位與自我注入鎖定雷達之研究
Research on Integer and Fractional Phase and Self-Injection Locked Radar
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-01-25
繳交日期
Date of Submission
2024-02-20
關鍵字
Keywords
連續波雷達、自我注入鎖定雷達、鎖相迴路、非接觸式生理徵象感測、訊雜比
Continuous Wave Radar, Self-Injection-Locked Radar, Phase-Locked Loop, Non-contact Physiological Signal Sensing, SNR
統計
Statistics
本論文已被瀏覽 129 次,被下載 0
The thesis/dissertation has been browsed 129 times, has been downloaded 0 times.
中文摘要
本論文研製可應用於2.4 GHz ISM頻帶之注入鎖定振盪器、整數型與分數型相位與自我注入鎖定雷達系統,利用鎖相迴路機制實現不同於SIL雷達使用正交解調器及延遲單元的解調方式,並解決SIL雷達在硬體層面上的限制,如難以小型化、非單一操作頻率而佔據頻寬、相位雜訊較差等問題,使雷達應用更廣泛。本次設計的相位與自我注入鎖定雷達感測性能稍優於SIL雷達,同時整體電路適合小型化,鎖相迴路機制使操作頻率單一,並由鎖相迴路抑制相位雜訊,使雷達能夠偵測較遠目標,操作頻率可透過改變除數精準調整。分數型相位與自我注入鎖定雷達保留整數型相位與自我注入鎖定雷達之優勢,實現更小的操作頻率調整間隔,在相同頻寬內可同時操作多組雷達。
實驗章節中,整數型與分數型相位與自我注入鎖定雷達皆可感測距離天線5公尺,擺幅0.5 mm的金屬板擺動,並比較不同雷達架構感測性能,比較結果依序為整數型相位與自我注入鎖定雷達、分數型相位與自我注入鎖定雷達、SIL雷達、最後是連續波雷達。應用SIL現象的雷達架構訊雜比表現皆大於傳統雷達架構20 dB以上,生理徵象感測實驗使用分數型相位與自我注入鎖定雷達,透過相移器解決感測無效點,完成近距離非接觸式人體生理徵象感測,感測結果與同步感測的呼吸帶、PPG及指尖血氧儀的數據一致。
Abstract
This thesis focuses on the development of an injection-locked oscillator and both integer and fractional-phase self-injection-locked radar for the 2.4 GHz ISM band. Utilizing a phase-locked loop mechanism, our approach introduces a decoding method distinct from traditional SIL radar, addressing hardware limitations. The designed integer-phase self-injection-locked radar exhibits slightly superior sensing performance to SIL radar, suitable for miniaturization. The phase-locked loop ensures a single operating frequency, suppressing phase noise for enhanced target detection. The fractional-phase self-injection-locked radar retains advantages, achieving a smaller operating frequency adjustment interval, facilitating simultaneous operation of multiple radars. In experiments, both radars successfully sensed a metallic plate with 0.5 mm amplitude movements at a distance of 5 meters. Comparative analysis showed the superiority of the integer-phase self-injection-locked radar over the fractional-phase counterpart, SIL radar, and continuous wave radar. Leveraging the SIL phenomenon resulted in consistently superior signal-to-noise ratios exceeding 20 dB compared to continuous wave radar. Physiological signal sensing using the fractional-phase self-injection-locked radar achieved non-contact sensing, aligning consistently with synchronous measurements from a respiratory belt, PPG, and fingertip pulse oximeter.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 vii
表次 x
第一章 序論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 相位與自我注入鎖定雷達 4
1-4 章節規劃 5
第二章 注入鎖定振盪器理論分析、實作與量測結果 6
2-1 Adler 方程式推導 6
2-2 SIL 模型分析 9
2-3 注入鎖定振盪器實作與量測 10
第三章 相位與自我注入鎖定雷達系統理論分析與實作 17
3-1 鎖相迴路與自我注入鎖定現象 17
3-2 鎖相迴路晶片與參數選擇 24
3-3 相位與自我注入鎖定雷達實作 29
3-4 閉迴路實驗 33
3-5 基頻放大器設計 36
第四章 非接觸式感測實驗設置與量測結果 40
4-1 金屬板感測實驗 40
4-2 雷達感測性能比較 46
4-3 生理徵象感測實驗 51
第五章 結論與未來展望 57
參考文獻 58
參考文獻 References
[1]D. Yang, J. Zhu, and P. Zhu, “SpO2 and heart rate measurement with wearable watch based on PPG,” in IET Int. Conf. Biomed. Image and Signal Process., 2015, pp. 1-5.
[2]C. Butca, G. Suciu, A. Ochian, O. Fratu and S. Halunga, “Wearable sensors and cloud platform for monitoring environmental parameters in e-health applications,” in IEEE Int. Symp. Electron. Telecommun., 2014, pp. 1-4.
[3]T. Sheng, Z. Fang, X. Chen, Z. Zhao and J. Li, “The design of wearable sleep apnea monitoring wrist watch,” in IEEE Int. Conf. E-Health Netw. Appl. and Services, 2017, pp. 1-6.
[4]C. Li, V. M. Lubecke, O. Boric-Lubecke and J. Lin, “A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring,” in IEEE Trans. Microwave Theory and Techn., vol. 61, no. 5, pp. 2046-2060, May 2013.
[5]C. Brüser, C. H. Antink, T. Wartzek, M. Walter, and S. Leonhardt, “Ambient and unobtrusive cardiorespiratory monitoring techniques,” IEEE Rev. Biomed. Eng., vol. 8, pp. 30–43, 2015.
[6]C. Shi, T. Costa, J. Elloian, Y. Zhang and K. L. Shepard, “A 0.065-mm3 Monolithically-Integrated Ultrasonic Wireless Sensing Mote for Real-Time Physiological Temperature Monitoring,” in IEEE Transactions on Biomedical Converters and Systems, vol. 14, no. 3, pp. 412-424, June 2020.
[7]A. D. Droitcour, O. Boric-Lubecke, G. T. A. Kovacs, "Signal-to- noise ratio in Doppler radar systems for heart and respiratory rate measurements", IEEE Trans. Microw. Theory Tech., vol. 57, pp. 2498-2507, Oct. 2009.
[8]W. D. Boyer, “A diplex, Doppler phase comparison radar,” IEEE Trans. Aerosp. Navig. Electron., vol. ANE-10, no. 1, pp. 27-33, March 1963.
[9]F. Wang, T. Horng, K. Peng, J. Jau, J. Li, and C. Chen, “Single-Antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[10]P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase-and self-injection-locked radar for detection vital signs with efficient elimination of dc offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013.
[11]F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[12]M. Mercuri, Y.-H. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. van Hoof, “Frequency-tracking CW Doppler radar solving smallangle approximation and null point issues in non-contact vital signs monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 671–680, Jun. 2017.
[13]F.-K. Wang, J.-X. Zhong, and J.-Y. Shih, “IQ signal demodulation for noncontact vital sign monitoring using a CW Doppler radar: A review,” IEEE J. Electromagn., RF Microw. Med. Biol., vol. 6, no. 4, pp. 449–460, Dec. 2022.
[14]R. Adler, “A study of locking phenomena in oscillators,” in Proc. IRE, vol. 34, Aug. 1946, pp. 351–357.
[15]R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans. Microwave Theory and Tech., vol. 10, no. 4, pp. 228–235, July 1962.
[16]Analog Device. [online]Available:
https://www.analog.com/en/analog-dialogue/articles/phase-locked-loop-pll-fundamentals.html
[17]彭康峻,無線通訊分數式頻率合成器之現場可程式邏輯陣列電路設計,國立中山大學電機工程研究所碩士論文, 2000.
[18]Delta-Sigma Fractional-N Phase-Locked Loops. [online]Available:
http://ispg.ucsd.edu/wordpress/wp-content/uploads/2017/05/2003-Tutorials-I.-Galton-Delta-Sigma-Fractional-N-Phase-Locked-Loops.pdf
[19]Mouser.[online]Available:
https://www.mouser.tw/datasheet/2/302/BB135-3138039.pdf
[20]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/HMC4069.pdf
[21]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/hmc440.pdf
[22]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADA4084-1_4084-2_4084-4.pdf
[23]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/62001ff.pdf
[24]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADA4625-1-4625-2.pdf
[25]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4152HV.pdf
[26]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4153A.pdf
[27]Analog Device. [online]Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4150HV.pdf
[28]A.Arakali, S.Gondi and P.K.Hanumolu, “Analysis and Design Techniques for Supply -Noise Mitigation in Phase-Locked Loops,” in IEEE Trans. Circuits and Systems, vol. 57, no. 11, pp. 2880-2889, Nov. 2010.
[29]M. Zakrzewski, H. Raittinen, and J. Vanhala, “Comparison of center estimation algorithms for heart and respiration monitoring with microwave doppler radar,” IEEE Sens. J., vol. 12, no. 3, pp. 627–634, 2012.
[30]Singh A, Rehman SU, Yongchareon S, Chong PHJ. “Modelling of Chest Wall Motion for Cardiorespiratory Activity for Radar-Based NCVS Systems,”
Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570465/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-02-20
校外 Off-campus:開放下載的時間 available 2027-02-20

您的 IP(校外) 位址是 18.226.17.251
現在時間是 2024-11-22
論文校外開放下載的時間是 2027-02-20

Your IP address is 18.226.17.251
The current date is 2024-11-22
This thesis will be available to you on 2027-02-20.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code