論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-01-28
校外 Off-campus:開放下載的時間 available 2027-01-28
論文名稱 Title |
高頻頻率調變連續波雷達系統研製 Research and Development of High Frequency FMCW Radar System |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
117 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-01-25 |
繳交日期 Date of Submission |
2024-01-28 |
關鍵字 Keywords |
調頻連續波雷達、直接數字合成器、頻率響應、高頻雷達、流場、到達角估計 FMCW radar, direct digital synthesizer, frequency response, high-frequency radar, surface current, AOA estimation |
||
統計 Statistics |
本論文已被瀏覽 189 次,被下載 0 次 The thesis/dissertation has been browsed 189 times, has been downloaded 0 times. |
中文摘要 |
欲發展、自製台灣專屬的雷達測流系統,本文以海洋中心於墾丁貓鼻頭公園KNTN測站的陣列雷達作為研究對象,分析其架構和運作原理,並主要針對該內部關鍵的電路或零組件如接收板、發射電路以及資料擷取系統等進行重製,甚至提出全新具有相同功能之電路,以達到降低採購成本以及提升修改彈性之目的。 首先本文針對系統內既有的接收板架構進行分析與量測,發現當拍頻訊號的頻率較低時會出現振幅較低的情形,為了解決頻率響應的問題,文中透過模擬軟體TINA-TI發現是其中的電容所致,於是排除該狀況後的改良式接收板,就能從提出的DEWETRON數據擷取系統中觀察到各頻率對應之振幅皆為一致。 其次為發射電路的部分,文中同樣頗析原廠發射電路RADCELF的架構以及運作原理,並依相同的概念重現,卻察覺同為D-TACQ電路中的ACQ1001電路無法傳送指定的訊號進行操作。因此本文選擇以AD9956開發板作為主軸,重新設計一款具有相同功能的發射電路進行取代,並使用頻譜分析儀與Keysight 89600 VSA來分析其輸出的調頻連續波的功率和品質,確保能達到預期的功效。 最後則是將上述儀器和電路整合於一雷達閉迴路架構,透過引起不同時間延遲的延遲線,來觀察各種實驗變數的情況下系統的內部延遲以及拍頻變化趨勢的合理性,以滿足現場量測對於先行實驗的需求。此外再將調頻連續波雷達量測目標物距離、速度以及到達角資訊的原理和公式透過程式進行模擬,建構一套完整解算原始數據的流程。 |
Abstract |
This paper aims to develop and manufacture a dedicated radar flow measurement system for Taiwan. It focuses on the array radar at the KNTN station in Maobitou Park, Kenting, operated by the Ocean Center, as the research subject. The paper analyzes its structure and operational principles, with a primary focus on the internal key circuits or components such as the receiving board, transmission circuit, and data acquisition system. The goal is to reproduce and even propose entirely new circuits with the same functionality to reduce procurement costs and enhance modification flexibility. Firstly, the paper conducts an analysis and measurement of the existing receiving board structure within the system. It is observed that lower-frequency beat signals result in lower amplitudes. To address the frequency response issue, the paper utilizes TINA-TI simulation software and identifies capacitors as the cause. Consequently, an improved receiving board, free from this condition, allows consistent amplitudes for various frequencies within the proposed DEWETRON data acquisition system. Next, regarding the transmission circuit, the paper similarly dissects the structure and operational principles of the original RADCELF transmission circuit. Despite reproducing it based on the same concepts, an issue arises with the ACQ1001 circuit within the D-TACQ circuit, preventing the transmission of specified signals. Therefore, the paper opts for the AD9956 development board as the main platform to redesign a transmission circuit with the same functionality. Spectral analysis using a spectrum analyzer and Keysight 89600 VSA is employed to analyze the power and quality of the outputted frequency-modulated continuous wave, ensuring the desired efficacy. Lastly, the paper integrates the aforementioned instruments and circuits into a closed-loop radar system to assess collective functionality. By employing delay lines causing different time delays, the paper observes the internal delays and beat frequency variation trends under various experimental conditions to meet on-site measurement requirements for preliminary experiments. Additionally, principles and formulas for measuring target distance, speed, and arrival angle using frequency-modulated continuous wave radar are simulated through programming, establishing a comprehensive process for interpreting raw data. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iv Abstract v 目錄 vii 圖次 ix 表次 xiii 第一章 序論 1 1.1前言 1 1.2研究背景與動機 4 1.3高頻測流雷達簡介 8 1.4章節規劃 12 第二章 調頻連續波雷達接收板改良及驗證 14 2.1螺旋天線與調頻連續波雷達系統介紹 14 2.2調頻連續波雷達公式推導 18 2.3接收板元件及架構 20 2.4接收板頻率響應 22 2.4.1接收板頻率響應實驗 23 2.4.2 接收板頻率響應模擬及改善 25 2.4.3改良式接收板頻率響應實驗 29 2.5數據擷取系統驗證 30 第三章 調頻連續波雷達發射電路設計及改良 34 3.1量測儀器及參數介紹 34 3.2 RADCELF發射電路 36 3.2.1 RADCELF發射電路及元件介紹 36 3.2.2 RADCELF發射電路架構及量測實驗 40 3.3 RADCELF發射電路重現實驗 45 3.4改良式發射電路 46 3.4.1相位雜訊量測實驗 46 3.4.2 AD9956開發板介紹及參數設定 50 3.4.3改良式發射電路設計及驗證 52 3.4.4一體成形式發射電路量測實驗 56 第四章 調頻連續波雷達系統整合與分析 59 4.1調頻連續波雷達閉迴路架構量測實驗 60 4.2調頻連續波雷達回波訊號模擬與驗證 77 4.2.1目標物距離估算 77 4.2.2目標物速度估算 82 4.2.3目標物到達角估算 88 第五章 結論與未來展望 95 參考文獻 97 |
參考文獻 References |
[1] 董東璟、蔡政翰、陳盈智、顏志偉、馬名軍(2014)。應用岸基微波雷達量測近岸海流空間分布。航測及遙測學刊,18(3),193-204。 [2] 陳銘誼。「應用微波雷達監測海流之演算法流程改善」。碩士論文,國立中央大學水文與海洋科學研究所,2021。 [3] Oceanservice [Online] Available: https://oceanservice.noaa.gov/education/tutorial_currents/06measure1.html [4] W3 [Online] Available: http://w3.oc.ntu.edu.tw/chap4/chap4s4.htm [5] W3 [Online] Available: http://w3.oc.ntu.edu.tw/chap4/chap4s3.htm [6] Lumpkin, R., & Pazos, M. Measuring surface currents with Surface Velocity Program drifters : the instrument , its data , and some recent results. [7] 吳立中、高家俊、王仲豪、王良生、陳秋份,2013,X-band 雷達應用於解析近岸海表面水文特徵之研究,第35屆海洋工程研討會論文集,第371-376頁。 [8] Ducet, N., Traon, P.Y.L., Reverdin, G., 2000. Global High-resolution Mapping of Ocean Circulation from TOPEX/Poseidon and ERS-1 and -2, Journal of Geophysical Research, 105 (C8), 19477-19498. [9] Crocker, R. I., D. K. Matthews, W. J. Emery, and B. Baldwin (2007), Computing coastal ocean surface currents from infrared and ocean color satellite imagery, IEEE Trans. Geosci. Remote Sens., 45(2), 435–447, doi:10.1109/TGRS.2006.883461. [10]交通部運輸研究所,海洋雷達應用於海象觀測之探討-應用案例探討,2018年。 [11]Barrick, D. E., M. W. Evans, B. L. Weber, 1977 : "Ocean Surface Currents Mapped by Radar", Science, 198, 138-144. [12]Paduan, Jeffrey D., and Leslie K. Rosenfeld, 1996 : "Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar)", Journal of Geophysical Research, 101.C9, 20669-20686. [13]A. Dzvonkovskaya, and K. W. Gurgel, “HF radar WERA application for ship detection and tracking,” Eur. J. Navig., vol. 7, no. 3, pp. 18-25, 2009. [14]N. F. Barber, F. Ursell, J. Darbyshire and M.J. 1946 ,Tucke: A frequency analysis used in the study of ocean waves. No. 158, pp.329-332. [15]Ijima, T., T. Takahashi, and H. Sasaki (1964), Application of radars to wave observations, in Proc. Conf. Coastal Eng,11th., edited, pp. 10-22. [16]Wright, F. F. (1965), Wave observation by shipboard radar, Ocean Sci. Ocean Engng, 1,506-514. [17]梁乃匡、劉安國、王冑(1992),利用合成孔徑雷達觀測波浪之研究,台灣大學海洋研究所。 [18]黃凱易、劉進金、郭一羽、呂黎光 (1992),海岸雷達遙測系統及其對海洋工程影響,1992遙測與地理資訊系統應用研討會論文集,135-150,中興大學。 [19]呂黎光、郭一羽、劉進金(1993),SPOT 資料應用於海洋波場試驗觀測,航空測量及遙感探測,25,73-93。 [20]吳立中、董東璟、林家豐、高家俊,2006,從雷達影像萃取近岸海域表面流場之研究,海洋工程學刊,第 6 卷,第 2 期,第 81-94頁。 [21]吳立中、董東璟、莊士賢,2008,雷達於海洋觀測之應用,海洋及水下科技季刊,第 18 卷,第 2 期,第 3-7 頁。 [22]吳立中、董東璟、莊士賢、高家俊,2009,航海雷達應用於海面波流監測可行性之探討,水利,第 19 期。 [23]TORI [Online] Available: https://www.tori.narl.org.tw/cContent.aspx?sNode=MarinePhysics [24]廖人鋒。「類神經網路之應用 ─ 台灣南部巴士海峽之高頻雷達表層海流資料補遺」。碩士論文,國立高雄海洋科技大學海事資訊科技研究所,2015。 [25]NARLabs [Online] Available: https://www.narlabs.org.tw/xmdoc/cont?xsmsid=0I148622737263495777&sid=0I151524436278192757 [26]Farmer, D.M., M.H. Alford, R.-C. Lien, Y.J. Yang, M.-H. Chang, and Q. Li, (2011) “From Luzon Strait to Dongsha Plateau: Stages in the life of an internal wave,”Oceanography, 24(4), 64–77,https://doi.org/10.5670/oceanog.2011.95 [27]賴堅戊、林昆毅、蕭毓宏 、黃郁軒、徐堂家 、楊文榮、 呂宜潔, 2019:“北側呂宋海峽雷達遙測實驗平台建置”, 108年天氣分析與預報研討會, A5海象測報與應用-131. [28]陳少華、徐堂家、程嘉彥、蕭毓宏(2021) 「相位陣列海洋雷達資料品質初步探討」,110年天氣分析與預報研討會,台北。 [29]黃郁軒、程嘉彥 (2021) 「多重訊號分類演算法應用於相位陣列雷達之徑向速度解析之研究」,110年天氣分析與預報研討會,台北。 [30]Gebhard, L.A. (1979). Evolution of Naval Radio-electronics and Contributions of the Naval Research Laboratory. University of Michigan Library, pp. 1- 488 [31]A Wolff, Christian, Radar Basics (online). Retrieved July 15, 2015, from http://www.radartutorial.eu/index.en.html [32]鍾育仁。「應用高頻雷達進行船舶回波識別及相關風險評估」。博士論文,國立成功大學海洋科技與事務研究所,2015。 [33]Wang, J. (2003). High Resolution Methods for Small Target Detection and Estimation in High Frequency Radar. PhD Thesis. [34]Headrick, J.M and M.I. Skolnik (1974). Over-the-Horizon in the HF Band. Proceeding of IEEE, Vol. 62, pp. 664-673. [35]Skolnik, M.I. (2001). Introduction to Radar Systems. McGraw-Hill, 3rd Edition. [36]IEEE (1984). IEEE Standard Letter Designations for Radar-Frequency Bands. pp.1-8. [37]Dzvonkovskaya, A.L., & Rohling, H. (2006). Target Detection with Adaptive Power Regression Thresholding for HF Radar. In, 2006 CIE International Conference on Radar (pp. 1-4). [38]Dzvonkovskaya, A.L., & Rohling, H. (2007). HF radar ship detection and tracking using WERA system. In, 2007 IET International Conference on Radar Systems (pp. 1-5). [39]Ponsford, A.M. and J. Wang. A Review of High Frequency Surface Wave Radar for Detection and Tracking of Ships. Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 18, Iss. 3, pp. 409-428 (2010). [40]D. D. Crombie, "Doppler spectrum of sea echo at 13.56 Mc/s", Nature, vol. 175, pp. 681-682, 1955. [41]薛宇倫。「台灣周遭海域高頻雷達測流成果之初步探討」。碩士論文,國立成功大學水利及海洋工程學系碩博士班,2013。 [42]Barrick, Donald E., M. W. Evans, and B. L. Weber. "Ocean Surface Currents Mapped by Radar: Mobile coastal units can map variable surface currents in real time to 70 kilometers, using ocean wave scatter." Science 198.4313 (1977): 138-144. [43]Paduan, Jeffrey D. and Leslie K. Rosenfeld. “Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar).” Journal of Geophysical Research 101 (1996): 20669-20686. [44]Kraus, J. D., “Helical beam antennas for wide-band applications,” Proc. IRE, Vol. 36, 1236–1242, Oct. 1948. [45] J. D. Kraus, “The Helical Antenna,” in Proc. IRE, vol. 37, no. 3, pp. 263-272, Mar. 1949. [46]ifuun [Online] Available: http://www.ifuun.com/a2018111317037929/ [47]P. Brennan, Y. Huang, M. Ash and K. Chetty, “Determination of Sweep Linearity Requirements in FMCW Radar Systems Based on Simple Voltage-Controlled Oscillator Sources,” IEEE Trans. Aerosp Electron Syst., vol. 47, no. 3, pp. 1594-1604, July 2011. [48]S. Baek, Y. Jung, and S. Lee, “Signal Expansion Method in Indoor FMCW Radar Systems for Improving Range Resolution,” Sensors21, no. 12, 2021. [49]A. G. Stove, “Linear FMCW radar techniques,” Proc. Inst. Electr. Eng. F—Radar Signal Process., vol. 139, no. 5, pp. 343–350, Oct. 1992. [50]T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928-937, Apr. 2010. [51]J. Lee, Y. Li, M. Hung and S. Huang, “A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,” in IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746-2756, Dec. 2010. [52]黃韋智。「高頻頻率調變連續波雷達子系統重現及改良」。碩士論文,國立中山大學電機工程學系研究所,2022。 [53]DigiKey [Online] Available: https://www.digikey.tw/zh/products/detail/analog-devices-nc/AD8672ARZ/751203 [54]Keysight [Online] Available: https://www.keysight.com/tw/zh/product/N9030B/ [55]Keysight [Online] Available: https://www.keysight.com/tw/zh/software/application-sw/89600-vsa-software.html#Resources [56]d-tacq [Online] Available: https://www.d-tacq.com/ [57]TAITIEN [Online] Available: https://www.taitien.com/tw/ti-products/ultra-low-phase-noise-ocxo-series-nf-100m-6800-type/ [58]DigiKey [Online] Available: https://www.digikey.tw/zh/products/detail/analog-devices-inc/AD9512-PCBZ/2342602 [59]DigiKey [Online] Available: https://www.digikey.tw/zh/products/detail/analog-devices-inc/AD9854ASVZ/4866793 [60]J. Tierney, C. M. Rader and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust., vol. AU-19, no. 1, pp. 48-56, Mar. 1971. [61]J. Vankka et al., “A direct digital synthesizer with an on-chip D/A-converter,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 218-227, Feb. 1998. [62]X. Yu, F. F. Dai, J. D. Irwin, and R. C. Jaeger, “A 9-Bit quadrature direct digital synthesizer implemented in 0.18 um SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1257-1266, May 2008. [63]Mouser [Online] Available: https://www.mouser.tw/ProductDetail/Mini-Circuits/SXLP-30+?qs=Imq1NPwxi76NZ6tfjqVXGA%3D%3D&mgh=1 [64]ANALOG [Online] Available: https://www.analog.com/en/products/hmc832a.html?doc=hmc832A.pdf [65]DigiKey [Online] Available: https://www.digikey.tw/zh/products/detail/connor-winfield/AO200-51003CF-025-0M/15291392 [66]ANALOG [Online] Available: https://www.analog.com/en/products/ad9956.html [67]Medium [Online] Available: https://chih-sheng-huang821.medium.com/%E8%AA%BF%E9%A0%BB%E9%80%A3%E7%BA%8C%E6%B3%A2%E9%9B%B7%E9%81%94-frequency-modulated-continuous-wave-fmcw-radars-%E6%B8%AC%E8%B7%9D-%E6%B8%AC%E9%80%9F%E5%8E%9F%E7%90%86-1-2-cc6ac4b501b4 [68]Medium [Online] Available: https://chih-sheng-huang821.medium.com/%E8%AA%BF%E9%A0%BB%E9%80%A3%E7%BA%8C%E6%B3%A2%E9%9B%B7%E9%81%94-frequency-modulated-continuous-wave-fmcw-radars-%E6%B8%AC%E8%B7%9D-%E6%B8%AC%E9%80%9F%E5%8E%9F%E7%90%86-2-3-981e4706fc9d [69]TI [Online] Available: https://www.ti.com/content/dam/videos/external-videos/2/3816841626001/5415528961001.mp4/subassets/mmwaveSensing-FMCW-offlineviewing_0.pdf [70]Medium [Online] Available: https://chih-sheng-huang821.medium.com/%E8%AA%BF%E9%A0%BB%E9%80%A3%E7%BA%8C%E6%B3%A2%E9%9B%B7%E9%81%94-frequency-modulated-continuous-wave-fmcw-radars-%E6%B8%AC%E8%B7%9D-%E6%B8%AC%E9%80%9F%E5%8E%9F%E7%90%86-3-3-5e19a7a9e1 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-01-28 校外 Off-campus:開放下載的時間 available 2027-01-28 您的 IP(校外) 位址是 13.58.67.133 現在時間是 2025-04-03 論文校外開放下載的時間是 2027-01-28 Your IP address is 13.58.67.133 The current date is 2025-04-03 This thesis will be available to you on 2027-01-28. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-01-28 |
QR Code |