Responsive image
博碩士論文 etd-0029125-182224 詳細資訊
Title page for etd-0029125-182224
論文名稱
Title
智能化醫學實驗室績效與流程管理之研究
The Study of Performance and Workflow Management on Intelligent Laboratory Medicine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-12-19
繳交日期
Date of Submission
2025-01-29
關鍵字
Keywords
門診檢驗智能化系統、全實驗室自動化系統、組織再造、病人安全、危急值通報
Outpatient Laboratory Medicine Intelligent System, Total Laboratory Automation System, Organizational Reengineering, Patient Safety, Critical Value Notification
統計
Statistics
本論文已被瀏覽 54 次,被下載 0
The thesis/dissertation has been browsed 54 times, has been downloaded 0 times.
中文摘要
台灣醫學實驗室面臨成本限縮與醫院評鑑要求,促使實驗室引進自動化設備,門診檢驗智能化系統與全實驗室自動化系統 (Total Laboratory Automation, TLA) 具提升檢驗效率、增加檢驗量能、優化檢體管理、整合檢驗報告、維護實驗室安全、促進作業流程標準化之效用。藉資通訊科技協助導入快速且即時的品管措施來監控檢體品質、自動化軌道、儀器與檢驗報告,並整合至全實驗室自動化流程中,可以創造全實驗室自動化系統更高的效益與優化檢驗流程。
高雄榮民總醫院病理檢驗部臨床檢驗科分別於2019與2021年建置門診檢驗智能化系統與全實驗室自動化系統,來提升醫檢師的檢驗效率、減少病友抽血等待時間、滿足病友與臨床醫護同仁對於檢驗報告在時效與品質上的需求,進而提升病人安全,實踐以病人為中心的照護思維。並於2020年進行組織再造活動,包括全院檢驗項目中央化與醫檢師人力整併,建置成效會因實驗室環境與醫檢師適應力而有所不同,本研究目的是探討門診檢驗智能化系統、全實驗室自動化系統與組織再造活動,在臨床醫學實驗室的結構面、過程面與結果面之影響。
本研究結合「結構-過程-結果」概念模型與平衡計分卡績效評估模型,發展本研究架構與各項評估指標。採用個案研究法 (Case Study)、前後比較研究法 (Before and After Study) 與回溯性研究法 (Retrospective Study)。資料來源包括本院資訊系統資料庫、實驗室資訊系統資料庫,並使用台灣醫事檢驗學會建立之台灣臨床實驗室品質指標系列資料,與全台灣醫院比較。
研究結果顯示醫學實驗室導入自動化、智能化設施與組織再造活動降低醫檢師人力需求50%、降低人員接觸檢體次數74.1%、提高實驗室產能32.4%、提升檢驗前流程效率61% ~ 72%、提升檢驗中流程效率22.3% ~ 91.5%、提升檢驗報告品質1.43%、提升檢驗後流程效益4.5% ~ 72.5%、提高年經濟效益62.1%、提升病人安全、衡量指標檢驗報告逾時率優於台灣醫學中心平均值0.6% ~ 3.0%。亦有未達成衡量指標,包括內部品管CV值超出目標值之檢驗項目比率、成本/收入比率、危急值醫師處置簽收時效與醫師2小時處置簽收率,5項品質指標未優於全國醫院,包括內部品管CV值超出目標值之檢驗項目比率、能力試驗結果不可接受比率、實驗室發出錯誤報告比率、檢驗危急值報告完成時間第90百分位數與檢驗危急值報告60分鐘逾時率。
智能化醫學實驗室藉由軟硬體設施整建、資通訊科技輔助、流程與組織再造,提供高品質與高效率臨床檢驗服務,醫檢師可利用檢驗大數據資料庫分析技術致力於醫學研究,貢獻於疾病診斷,創造價值。本研究結果可為其他希望建立類似實驗室系統的同儕提供有價值的參考。
Abstract
In the context of cost constraints and hospital accreditation requirements, medical laboratories in Taiwan are increasingly adopting automation technologies. The integration of intelligent outpatient laboratory medicine and total laboratory automation (TLA) has been shown to enhance testing efficiency, increase testing capacity, improve specimen management, consolidate reporting, maintain laboratory safety, and standardize operational processes. Utilizing information and communication technology, rapid and real-time quality control measures can be implemented to monitor specimen quality, automation tracks, instruments, and test reports, thereby optimizing the overall laboratory automation process.
The Department of Pathology and Laboratory Medicine at Kaohsiung Veterans General Hospital established an intelligent outpatient laboratory medicine system in 2019 and a total laboratory automation system in 2021. These initiatives aimed to improve the efficiency of laboratory testing, reduce patient waiting times for phlebotomy, and meet the demands of patients and clinician regarding the timeliness and quality of test reports, ultimately enhancing patient safety and fostering a patient-centered care model. In 2020, an organizational restructuring activities was conducted, which included centralizing laboratory testing and consolidating medical technologists (MTs). The effectiveness of these implementations varies based on the laboratory environment and the adaptability of MTs.
The "Structure-Process-Outcome" conceptual model was integrated with the Balanced Scorecard performance evaluation model to develop the framework and evaluation indicators for this research. A case study approach, before-and-after study method, and retrospective study method were employed. Data were collected from the hospital's information system database, the laboratory information system database, as well as the Taiwan Laboratory Indicators series established by the Taiwan Society of Medical Technology, which were compared with hospitals across Taiwan.
The results indicate that the introduction of automation, intelligent facilities, and organizational restructuring in medical laboratories reduced the demand for laboratory technologists by 50%, decreased tube tough moments of staff by 74.1%, increased laboratory productivity by 32.4%, improved pre-analytical process efficiency by 61% to 72%, enhanced analytical process efficiency by 22.3% to 91.5%, improved the quality of examination reports by 1.43%, increased post-analytical process effectiveness by 4.5% to 72.5%, raised annual economic benefits by 62.1%, enhanced patient safety, and improved the timeliness of examination report delivery, which outperformed the average values of medical centers in Taiwan by 0.6% to 3.0%. However, certain performance indicators were not achieved, including the precission (Coefficient of Variation, CV%) of the internal quality control exceeding the target value, cost-to-revenue ratio, the timeliness of critical value physician interventions, and the 2-hour physician intervention sign-off rate.
Furthermore, five quality indicators were not superior to the national hospital average, including the CV% of the internal quality control exceeding the target value, unacceptable proficiency testing results, the error report rate issued by the laboratory, the 90th percentile of critical value report completion time, and the critical value report exceeding 60 minutes.
An intelligent medical laboratory, through the reconstruction of hardware and software facilities, ICT support, and process and organizational restructuring activities, offers high-quality and efficient clinical laboratory services. Laboratory technologists can leverage big data analytics for medical research, contribute to disease diagnosis, and create value. The findings of this study provide valuable reference for peers aiming to establish similar laboratory systems.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖次 ix
表次 xii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 14
第二章 文獻探討 15
第一節 結構、過程、結果概念模型 16
第二節 平衡計分卡 (Balanced scorecard) 18
第三節 組織再造 (Organization Reengineering) 21
第四節 門診檢驗智能化系統 30
第五節 全實驗室自動化系統 32
第六節 檢驗品質 36
第七節 經濟效益 41
第八節 危急值通報 44
第三章 研究方法 47
第一節 研究架構 47
第二節 研究假設 48
第三節 研究設計與方法 49
第四節 研究數據來源 57
第五節 研究變項之操作型定義 59
第六節 資料處理與統計分析 64
第四章 研究結果 65
第一節 門診檢驗智能化系統效能 65
第二節 全實驗室自動化系統效能 71
第三節 全實驗室自動化系統對檢驗危急值報告效率與通報效益的影響 101
第五章 研究討論 115
第一節 門診檢驗智能化系統效能探討 115
第二節 全實驗室自動化系統效能探討 118
第三節 組織再造效益分析 129
第四節 TLA對檢驗危急值通報效益探討 131
第五節 研究限制 135
第六章 結論與建議 136
第一節 結論 136
第二節 建議 138
參考文獻 143
附錄 153
參考文獻 References
1. Lou AH, Elnenaei MO, Sadek I, Thompson S, Crocker BD, Nassar B. Evaluation of the impact of a total automation system in a large core laboratory on turnaround time. Clinical Biochemistry. 2016; 49(16-17): 1254-1258.
2. Mrazek C, Lippi G, Keppel MH, Felder TK, Oberkofler H, Haschke-Becher E, Cadamuro J. Errors within the total laboratory testing process, from test selection to medical decision-making - A review of causes, consequences, surveillance and solutions. Biochemia Medica (Zagreb). 2020; 30(2): 020502.
3. Piva E, Tosato F, Plebani M. Pre-analytical phase: The automated ProTube device supports quality assurance in the phlebotomy process. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2015; 451(Pt B): 287-291.
4. Lou AH, Elnenaei MO, Sadek I, Thompson S, Crocker BD, Nassar BA. Multiple pre- and post-analytical lean approaches to the improvement of the laboratory turnaround time in a large core laboratory. Clinical Biochemistry. 2017; 50(15): 864-869.
5. 謝政憲. 應用等候理論分析郵局儲匯窗口服務效能. 國立台東大學資訊管理學系. 2011; 碩士論文: 1-91.
6. Ben-Tovim DI, Bassham JE, Bolch D, Martin MA, Dougherty M, Szwarcbord M. Lean thinking across a hospital: redesigning care at the Flinders Medical Centre. Australian Health Review: a publication of the Australian Hospital Association. 2007; 31(1): 10-15.
7. Inal TC, Goruroglu Ozturk O, Kibar F, Cetiner S, Matyar S, Daglioglu G, Yaman A. Lean six sigma methodologies improve clinical laboratory efficiency and reduce turnaround times. Journal of Clinical Laboratory Analysis. 2018; 32(1): e22180.
8. 葉孟青. 工業工程與工程管理在醫院管理之應用—以北部某區域醫院為例. 國立清華大學工業工程與工程管理學系. 2009; 碩士論文: 1-103.
9. 財團法人醫院評鑑暨醫療品質策進會. 衛生福利部台灣病人安全資訊網名詞釋義. 2024.
10. 財團法人醫院評鑑暨醫療品質策進會. 醫院病安目標. 2020.
11. 周康茹, 林秋燕, 楊德沛. 以臨床醫師觀點建立確保病人安全之重要異常值的通報與後續追蹤系統. 醫療品質雜誌. 2009; 3(4): 96-99.
12. Da Rin G. Pre-analytical workstations: a tool for reducing laboratory errors. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2009; 404(1): 68-74.
13. 郭英調. 醫療品質概論. 台灣醫學. 2005; 9(3): 392-394.
14. Donabedian A. Evaluating the quality of medical care. 1966. Milbank Q. 2005; 83(4): 691-729.
15. 曾慧姬, 陳靜敏, 李孟芬, 蔡淑鳳. 台灣長期照顧管理中心運作現況探討. 長期照護雜誌. 2010; 14(2): 161-176.
16. 周歆凱. 應用結構-過程-結果架構評估遠距居家照護支援系統效果:實地實驗法. 國立中正大學資訊管理學系. 2014; 博士論文: 1-175.
17. 林志遠. 醫院緊急醫療能力分級政策對緊急醫療結構、過程、結果品質及使用適當性之影響. 國立陽明大學衛生福利研究所. 2020; 博士論文:1-432
18. 許士軍. 管理學 (第11版): 台灣東華書局股份有限公司; 2019.
19. Kaplan RS, Norton DP. Using the balanced scorecard as a strategic management system. Harvard Business Review. 1996; 74(1): 71-79.
20. 王梅貴, 陳美杏. 從醫院組織變革談護理衝擊與因應. 高雄護理雜誌. 2006; 23(1): 16-22.
21. 蘇慧芳, 謝碧晴, 葉明理, 林佳慧. 由組織變革談護理再造. 護理雜誌. 2003; 50(2): 17-23.
22. 林瓊瀛. 為何而變?何時該變?該如何變?解開組織變革的五個問號. 會計研究月刊. 2001; (188): 16-19.
23. 吳定. 組織發展理論與技術. 台北市: 五南圖書出版股份有限公司; 1991.
24. 吳秉恩. 組織行為學. 台北市: 華泰文化事業有限公司; 1993.
25. Jennifer M. George, Gareth R. Jones. 吳玲玲譯. 組織行為 (Organizational Behavior). 台北市: 智勝文化事業有限公司; 2004.
26. 林建煌. 管理學. 台北市: 智勝文化事業公司; 2004.
27. 黃賀. 組織行為影響力的形成與發揮. 台北市: 前程文化事業有限公司; 2009.
28. Gulati PKaK. Implanting change in organization successfully. Asian Journal of Managment Reseach. 2010; 5(3): 131.
29. 溫金豐. 組織理論與管理. 台北市: 華泰文化事業有限公司; 2012.
30. 謝游麟. 論國軍組織變革之發展與因應. 國防雜誌. 2014; 29(2): 1-20.
31. Lunenburg FC. Approaches to managing organizational change. International Journal of Scholarly Academic Intellectual Diversity. 2010; 12(1): 1-10.
32. 蘭堉生. 企業組織變革中HR之角色. 104人資學院專刊. 2021; 28.
33. 李新鄉. 組織心理學. 台北市: 五南文化股份有限公司; 2008.
34. Pierson D, Williams J. Remaking the rules: Hospitals attempt work transformation. Hospitals and Health Networks. 1994; 68(5): 30.
35. Hammer M, Champy J. 楊幼蘭譯. 改造企業: 再生策略的藍本. 台北市: 牛頓出版股份有限公司; 1997.
36. Hammer M, Champy J. Reengineering the corporation: A manifesto for business revolution. New York: Harper Business. 1993.
37. 許苗. 公立醫院組織變革之研究-以台北市立聯合醫院為例. 管理研究所. 2007;碩士論文: 1-116.
38. Davenport TH. Process innovation: Reengineering work through information technology. Harvard Business School. 1993.
39. Kotter JP, Cohen D. Change leadership: The Kotter collection (5 Books): Harvard Business Review Press; 2014.
40. Bossuyt X, Verweire K, Blanckaert N. Laboratory medicine: Challenges and opportunities. Clinical Chemistry. 2007;53(10): 1730-1733.
41. Dolci A, Giavarina D, Pasqualetti S, Szőke D, Panteghini M. Total laboratory automation: Do stat tests still matter? Clinical Biochemistry. 2017; 50(10): 605-611.
42. Plebani M. Errors in clinical laboratories or errors in laboratory medicine? Clinical Chemistry and Laboratory Medicine. 2006; 44(6): 750-759.
43. 曾志偉, 許胤璁, 李恒昇, 曾陽明. 檢驗前智能系統對內部流程構面績效之影響. 台灣醫檢雜誌. 2021; 36(3): 1-10.
44. Carraro P, Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clinical Chemistry. 2007; 53(7): 1338-1342.
45. Plebani M, Carraro P. Mistakes in a stat laboratory: types and frequency. Clinical Chemistry. 1997; 43(8 Pt 1): 1348-1351.
46. 林曉華, 鄭鴻榕, 林汶珊. 運用失效模式與影響分析來改善門診病人採檢的流程. 醫務管理期刊. 2013; 14(3): 228-243.
47. Lippi G, Da Rin G. Advantages and limitations of total laboratory automation: a personal overview. Clinical Chemistry and Laboratory Medicine. 2019; 57(6): 802-811.
48. Lippi G, Giavarina D. A survey on sample matrix and preanalytical management in clinical laboratories. Biochimica Clinica. 2017; 41(2): 142-147.
49. 曾志偉, 李英俊, 李恒昇, 許胤璁, 曾陽明. 綜論臨床實驗室引進全自動作業系統之優勢與限制. 台灣醫檢雜誌. 2024; 39(1): 1-8.
50. 吳振龍, 紀櫻珍, 郭芳礎, 趙淑貞, 許朝程. 臨床檢驗自動化作業系統之建置與效益. 北市醫學雜誌. 2005; 2(11): 982-989.
51. Zaninotto M, Plebani M. The "hospital central laboratory": automation, integration and clinical usefulness. Clinical Chemistry and Laboratory Medicine. 2010; 48(7): 911-917.
52. Genzen JR, Burnham CD, Felder RA, Hawker CD, Lippi G, Peck Palmer OM. Challenges and opportunities in implementing total laboratory automation. Clinical Chemistry. 2018; 64(2): 259-264.
53. Holland LL, Smith LL, Blick KE. Total laboratory automation can help eliminate the laboratory as a factor in emergency department length of stay. American Journal of Clinical Pathology. 2006; 125(5): 765-770.
54. Ialongo C, Porzio O, Giambini I, Bernardini S. Total automation for the core laboratory: improving the turnaround time helps to reduce the volume of ordered STAT tests. Journal of Laboratory Automation. 2016; 21(3): 451-458.
55. Miler M, Nikolac Gabaj N, Dukic L, Simundic AM. Key Performance indicators to measure improvement after implementation of total laboratory automation Abbott Accelerator a3600. Journal of Medical Systems. 2017; 42(2): 28.
56. van Moll C, Egberts T, Wagner C, Zwaan L, Ten Berg M. The Nature, Causes, and clinical impact of errors in the clinical laboratory testing process leading to diagnostic error: a voluntary incident report analysis. Journal of Patient Safety. 2023; 19(8): 573-579.
57. Hawkins RC. Laboratory turnaround time. The Clinical Biochemist Reviews. 2007; 28(4): 179-194.
58. Angeletti S, De Cesaris M, Hart JG, Urbano M, Vitali MA, Fragliasso F, Dicuonzo G. Laboratory automation and intra-laboratory turnaround time: experience at the university hospital campus Bio-Medico of Rome. Journal of Laboratory Automation. 2015; 20(6): 652-658.
59. Lam CW, Jacob E. Implementing a laboratory automation system: experience of a large clinical laboratory. Journal of Laboratory Automation. 2012; 17(1): 16-23.
60. Holland LL, Smith LL, Blick KE. Reducing laboratory turnaround time outliers can reduce emergency department patient length of stay: an 11-hospital study. American Journal of Clinical Pathology. 2005; 124(5): 672-674.
61. Lippi G, Ferrari A, Gaino S, Caruso B, Bassi A, Bovo C. Preanalytical errors before and after implementation of an automatic blood tube labeling system in two outpatient phlebotomy centers. Clinical Chemistry and Laboratory Medicine. 2018; 56(9): e217-e219.
62. Hawker CD, Roberts WL, Garr SB, Hamilton LT, Penrose JR, Ashwood ER, Weiss RL. Automated transport and sorting system in a large reference laboratory: part 2. Implementation of the system and performance measures over three years. Clinical Chemistry. 2002; 48(10): 1761-1767.
63. Plebani M. Towards a new paradigm in laboratory medicine: the five rights. Clinical Chemistry and Laboratory Medicine. 2016; 54(12): 1881-1891.
64. 社團法人台灣醫事檢驗學會. 利用品質指標監控醫學實驗室品質與改進作業流程指引. 2017.第1版.
65. 社團法人台灣醫事檢驗學會. 定量檢驗品管指引. 2019. 第3版
66. 高智雄. 醫學實驗室定量檢測量測不確定度. 台灣醫檢雜誌. 2016; 31(4): 23-34.
67. Fraser CG. Biological variation: from principles to practice: American Association for Clinical Chemistry; 2001.
68. 社團法人台灣醫事檢驗學會. 以能力試驗與其替代評估方案改善臨床實驗室檢驗品質作業指引. 2020. 第1版.
69. 台灣臨床實驗室品質指標系列 (TLIS) 簡介.台北市: 社團法人台灣醫事檢驗學2017. [2024年11月11日下載]。取自: http://tlis.labmed.org.tw/profile/profile.php
70. Leaven LT. Improving hospital laboratory performance: implications for healthcare managers. Hospital Topics. 2015; 93(2): 19-26.
71. Archetti C, Montanelli A, Finazzi D, Caimi L, Garrafa E. Clinical laboratory automation: a case study. Journal of Public Health Research. 2017; 6(1): 881.
72. Sarkozi L, Simson E, Ramanathan L. The effects of total laboratory automation on the management of a clinical chemistry laboratory. Retrospective analysis of 36 years. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2003; 329(1-2): 89-94.
73. Al Naam YA, Elsafi S, Al Jahdali MH, Al Shaman RS, Al-Qurouni BH, Al Zahrani EM. The impact of total automaton on the clinical laboratory workforce: a case study. Journal of Healthcare Leadership. 2022; 14: 55-62.
74. Kim K, Lee SG, Kim TH, Lee SG. Economic evaluation of total laboratory automation in the clinical laboratory of a tertiary care hospital. Annals of Laboratory Medicine. 2022; 42(1): 89-95.
75. Tseng CW, Li YC, Lee HS, Tseng YM. Laboratory testing consolidation and total laboratory automation improves service efficiency and effectiveness: a study of a medical center in Taiwan. Laboratory Medicine. 2024; 55(6): 677-685.
76. 曾志偉, 李英俊, 許胤璁, 李恒昇, 曾陽明. 檢驗中央化與智能化軌道系統對組織內部績效之影響. 台灣醫檢雜誌. 2023; 38(2): 18-32.
77. Young DS. Laboratory automation: smart strategies and practical applications. Clinical Chemistry. 2000; 46(5): 740-745.
78. The joint commission releases improving America's hospitals: The Joint Commission's Annual Report on Quality and Safety, 2008. Joint Commission Perspectives. 2009; 29(1): 3-5.
79. 黃麗月, 黃泓淵. 以流程E化管理提昇檢驗報告危急值回覆率之成效探討. 醫療品質. 2015; 6(1): 9-12.
80. Piva E, Sciacovelli L, Zaninotto M, Laposata M, Plebani M. Evaluation of effectiveness of a computerized notification system for reporting critical values. American Journal of Clinical Pathology. 2009; 131(3): 432-441.
81. Arbiol-Roca A, Corral-Comesaña S, Cano-Corres R, Castro-Castro MJ, Dastis-Arias M, Dot-Bach D. Analysis of laboratory critical values at a referral Spanish tertiary university hospital. Biochemia Medica (Zagreb). 2019; 29(1): 010704.
82. Lundberg G. When to panic over abnormal values. Medical Laboratory Observer. 1972; 4(1): 47-54.
83. 林愷亭, 王怡人. 危險值通報系統在病人安全防治之規劃與檢討-以衛生福利部某區域醫院為例. 醫學與健康期刊. 2016; 5(2): 9-19.
84. 郭素娥, 姚銘忠, 楊鎮嘉, 黃梅芬. 以資訊科技建構病人安全事件通報系統-以某區域醫院為例. 健康管理學刊. 2008; 6(1): 1-16.
85. 吳宛庭, 施威祥, 王拔群, 朱學亭, 徐志育, 郭書麟. 運用資訊系統建置臨床檢驗異常危急值雙向即時通報系統. 醫療品質雜誌. 2014; 8(2): 44-49.
86. AlSadah K, O SE-M, Alzahrani F, Alomar A, Ghany MA. Reporting clinical laboratory critical values: a focus on the recommendations of the American College Of Pathologists. Journal of Ayub Medical College Abbottabad. 2019; 31(4): 612-618.
87. Howanitz PJ, Steindel SJ, Heard NV. Laboratory critical values policies and procedures: a college of American Pathologists Q-Probes Study in 623 institutions. Archives of Pathology and Laboratory Medicine. 2002; 126(6): 663-669.
88. Piva E, Sciacovelli L, Pelloso M, Plebani M. Performance specifications of critical results management. Clinical Biochemistry. 2017; 50(10-11): 617-621.
89. CLSI. Management of critical and significant risk results. CLSI GP47 document. 2015; 1st edition.
90. Delgado Rodríguez JA, Pastor García MI, Gómez Cobo C, Pons Más AR, Llompart Alabern I, Bauça JM. Assessment of a laboratory critical risk result notification protocol in a tertiary care hospital and their use in clinical decision making. Biochemia Medica (Zagreb). 2019; 29(3): 030703.
91. Valenstein PN, Wagar EA, Stankovic AK, Walsh MK, Schneider F. Notification of critical results: a College of American Pathologists Q-Probes study of 121 institutions. Archives of Patholigy and Laboratory Medicine. 2008; 132(12): 1862-1867.
92. Haverstick DM. Critical value called, read-back obtained. American Journal of Clinical Pathology. 2004; 121(6): 790-791.
93. Kuperman GJ, Sittig DF, Shabot MM, Teich J. Clinical decision support for hospital and critical care. Journal of Healthcare Information Management. 1999; 13(2): 81-96.
94. Dighe AS, Rao A, Coakley AB, Lewandrowski KB. Analysis of laboratory critical value reporting at a large academic medical center. American Journal of Clinical Pathology. 2006; 125(5): 758-764.
95. Kuperman GJ, Teich JM, Tanasijevic MJ, Ma'Luf N, Rittenberg E, Jha A, Fiskio J, Winkelman J, Bates DW. Improving response to critical laboratory results with automation: results of a randomized controlled trial. Journal of American Medical Informatics Association. 1999; 6(6): 512-522.
96. 胡瑋珊. 精實醫療:以精實方法改善醫療品質、病患安全與員工滿意. 財團法人中衛發展中心. 2011. 第1版
97. 王俊民, 李貞瑩, 楊婉媛, 林佑宣, 陳孟莉. 運用精實方法評估抽血區智能化系統效益: 以臺中榮民總醫院為例. 台灣醫檢雜誌. 2019; 34(2): 12-20.
98. Holland LL, Smith LL, Blick KE. Reducing laboratory turnaround time outliers can reduce emergency department patient length of stay: an 11-hospital study. American Journal of Clinical Pathology. 2005; 124(5): 672-674.
99. 社團法人台灣醫事檢驗學會. 台灣臨床實驗室品質指標系列操作型定義. 2022. 第2版
100. Yeo CP, Ng WY. Automation and productivity in the clinical laboratory: experience of a tertiary healthcare facility. Singapore Medical Journal. 2018; 59(11): 597-601.
101. 高智雄, 許琳偵. 運用資訊科技持續改進住院檢驗醫囑執行正確性. 台灣醫檢雜誌. 2018; 33(4): 34-38.
102. 董韋廷, 王俊民, 吳懿芳. 實施週六預約抽血制度經驗分享. 台灣醫檢會報. 2013; 28(4): 169-177.
103. Ellison TL, Alharbi M, Alkaf M, Elimam S, Alfaries M, Nounou RA, Nasr R, Owaidah T. Implementation of total laboratory automation at a tertiary care hospital in Saudi Arabia: effect on turnaround time and cost efficiency. Annals of Saudi Medicine. 2018; 38(5): 352-357.
104. Torke N, Boral L, Nguyen T, Perri A, Chakrin A. Process improvement and operational efficiency through test result autoverification. Clinical Chemistry. 2005; 51(12): 2406-2408.
105. Shih M-C, Chang H-M, Tien N, Hsiao C-T, Peng C-T. Building and validating an autoverification system in the clinical chemistry laboratory. Laboratory Medicine. 2011; 42(11): 668-673.
106. 社團法人台灣醫事檢驗學會. 臨床實驗室檢驗結果自動驗證管理指引. 2022. 第2版.
107. Farrell CJ, Carter AC. Serum indices: managing assay interference. Annals of Clinical Biochemistry. 2016; 53(Pt 5): 527-538.
108. Felder RA. Automated specimen inspection, quality analysis, and its impact on patient safety: beyond the bar code. Clinical Chemistry. 2014; 60(3): 433-434.
109. 2024服務型機器人應用示範觀摩: 提升醫療效率與酒店服務質量. 台北市. 社團法人台灣智慧自動化與機器人協會. 2024. [2024年11月11日下載]。取自: https://www.tairoa.org.tw/column/bnGenerator.aspx?Language=zh-TW&CategoryId =13&ColumnId=15956
110. Hétu PO, Hobeila S, Larivière F, Bélanger MC. Improved sample quality and decreased turnaround time when using plasma blood collection tubes with a mechanical separator in a large university hospital. Journal of Applied Laboratory Medicine. 2021; 6(2): 409-420.
111. Sepulveda JL, Young DS. The ideal laboratory information system. Archives of Pathology Laboratory Medicine. 2013; 137(8): 1129-1140.
112. Seaberg RS, Stallone RO, Statland BE. The role of total laboratory automation in a consolidated laboratory network. Clinical Chemistry. 2000; 46(5): 751-756.
113. Zaninotto M, Plebani M. The “hospital central laboratory”: automation, integration and clinical usefulness. Clinical Chemistry and Laboratory Medicine. 2010; 48(7): 911-917.
114. 李名世、蔡德龍. 專家觀察: 全球醫檢科技五趨勢,助打造精準化、個人化醫療策略. 台北市: 商業週刊; 2021。[2023年2月16日下載]。取自https://www.businessweekly.com.tw/style/indep/1001862
115. Naugler C, Church DL. Automation and artificial intelligence in the clinical laboratory. Critical Reviews In Clinical Laboratory Sciences. 2019; 56(2): 98-110.
116. 財團法人全國認證基金會. ISO 15189醫學實驗室—品質與能力要求. 2022.
117. Li R, Wang T, Gong L, Dong J, Xiao N, Yang X, Zhu D, Zhao Z. Enhance the effectiveness of clinical laboratory critical values initiative notification by implementing a closed-loop system: A five-year retrospective observational study. Journal of Clinical Laboratory Analysis. 2020; 34(2): e23038.
118. Lehman CM, Howanitz PJ, Souers R, Karcher DS. Utility of repeat testing of critical values: a Q-probes analysis of 86 clinical laboratories. Archives of Patholigy and Laboratory Medicine. 2014; 138(6): 788-793.
119. 郭書宏, 黃偉春, 莊旺川, 林坤璋, 洪宛廷, 鄭錦昌, 江承鴻, 鍾幸枝, 陸雅美, 陳柑伴 et al. 高雄榮總自動化病危早期警示系統. 醫療品質雜誌. 2019; 13(2): 47-50.
120. Jerng JS, Ko WJ, Lu FL, Chen YS, Huang SF, Yu CJ, Wang MJ, Lin FY. Incidence and significance of clinically abnormal events in a tertiary referral medical center: implementation of the clinical alert system (CAS). Journal of Formosan Medical Association. 2008; 107(5): 396-403.
121. Parasuraman A, Zeithaml VA, Berry LL. A conceptual model of service quality and its implications for future research. Journal of Marketing. 1985; 49(4): 41-50.
122. Zeithaml VA, Berry LL, Parasuraman A. Communcation and control processes in the delivery of service. Journal of Marketing. 1988; 52(2): 35-48.
123. 蔡文正, 龔佩珍, 翁瑞宏, 石賢彥. 基層醫師與民眾之服務品質認知落差分析. 醫務管理期刊. 2004; 5(4): 385-402.
124. 謝月貞. 應用服務品質缺口理論探討門診檢驗服務品質. 國立雲林科技大學健康產業管理研究所. 2010; 碩士論文: 1-96
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-01-29
校外 Off-campus:開放下載的時間 available 2028-01-29

您的 IP(校外) 位址是 216.73.216.89
現在時間是 2025-06-23
論文校外開放下載的時間是 2028-01-29

Your IP address is 216.73.216.89
The current date is 2025-06-23
This thesis will be available to you on 2028-01-29.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2028-01-29

QR Code