Responsive image
博碩士論文 etd-0102123-100050 詳細資訊
Title page for etd-0102123-100050
論文名稱
Title
國會政黨臉書針對新冠肺炎「責難式」發文之比較-以BERT模型分析第九屆、第十屆立法院
A Comparison of the Blaming Texts on Facebook in Response to COVID-19 Posted by Legislators from Different Parties - An Analysis of the 9th and 10th Legislative Yuan with the BERT Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-01-11
繳交日期
Date of Submission
2023-02-02
關鍵字
Keywords
新冠肺炎、責難、民主韌性、聚旗效應、BERT、情緒預測
COVID-19, Blame, Democratic Resilience, Rally ‘round the flag effect, BERT, Sentiment Analysis
統計
Statistics
本論文已被瀏覽 314 次,被下載 13
The thesis/dissertation has been browsed 314 times, has been downloaded 13 times.
中文摘要
近年新冠肺炎的肆虐,促使政府執行嚴格防疫措施,惟此舉雖然有助於抑制疫情的傳播,但其中卻也隱藏侵害基本人權的疑慮與行政擴張的風險。而在此背景之下,也衍伸出一個重要問題,即反對黨是否在國家面臨危機時,會傾向與政府合作,降低責難?還是會更為責難政府?而執政黨的國會議員又會配合施政,不加責難嗎?第二,在疫情時期,當疫情走向「嚴峻」或「趨緩」時,國會議員(尤以反對黨)對政府的責 難是否會隨疫情的嚴峻或趨緩而有增加或減少?

基於上述的疑問,本文將以聚旗效應(Rally ‘round the flag effect) 與民主韌性(Democratic Resilience) 作為理論基礎。並以第九屆與第十屆立法委員的臉書貼文為分析資料,透過Keras介面下的BERT模型,進行情緒分析(Sentiment Analysis),藉此比較非疫情時期與疫情時期立法委員對政府的責難變化。並於最後使用迴歸分析來檢證政黨是否為預測責難性的重要因素,以及不同獨立變數與責難性之間的影響。

研究發現,執政黨能更符合本文所欲探討的疫情下聚旗效應理論與民主韌性理論之期待,即面臨危機時會,執政黨籍立委會傾向共同對抗,降低責難,並在危機趨緩後,回復至以往的責難性。而在野黨雖然未出現聚齊效應的效果,但仍展現民主韌性的一面,即不論面臨危機之嚴峻或趨緩時,皆是加強責難,甚至比嚴峻時期有更高的責難表現,以盡監督一職,保持民主體制的機能。
Abstract
Since Covid-19 outbroke, measures and quarantine implemented by Taiwan government had effectively prevented the spread of virus. However, there are concerns about the violations of human rights and the expansion of administrative power. A significant question arises: when the society was facing a crisis, would opposition parties tend to collaborate with the government and reduce blame for the loss in pandemic, or would they be more critical to the government? On the other hand, whether would the legislators of the ruling party collaborate with the government more coordinately? or whether would the legislators of opposition parties impose less blame on the government when the pandemic was mitigated?

Based on the questions above, this thesis will focus how the legislators condemned government during two periods repsectively: before and after Covid-19 outbreak. On the theoretical basis of Rally ‘round the flag effect and Democratic Resilience, we conducted sentimental analysis on data from the 9th and 10th legislators’ Facebook posts using BERT model of Keras to quantitively study the change in legislators’ blame between the two periods. Then, we utilize regression method to examine how political party was an important factor to the severity of blame on the government, and to investigate the correlation between blame and different independent variables.

The discovery from our study, the legislators of the ruling party inclined to comply with the expectations of the theories, Rally ‘round the flag effect and Democratic Resilience. This result implies that the legislators of the ruling party were more willing to collaborate with and reduced blame on the government when facing crisis, and then, after crisis was relieved, returned to the same criticism to the government as previous. Although opposition party members did not show Rally ‘round the flag effect, they displayed the spirit of Democratic Resilience, which means they blame on the government as usual regardless of in crisis or not, or even blame more severely in crisis. This can be viewed as the fulfillment of supervision, maintaining the completeness of democracy function.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 v
圖次 vii
表次 viii
第一章、緒論 1
1.1研究背景及動機 1
1.2研究目的 3
第二章、文獻回顧 4
2.1民主制度下的政黨互動 4
2.2危機時期的政黨互動與聚旗效應 7
2.3民主韌性 10
2.4國會議員與社群媒體 12
2.5危機時期與社群媒體的運用 14
2.6責難的意義 15
2.7國會議員在臉書上的發言 15
2.8政治學領域的資訊技術應用 18
第三章、研究方法 19
3.1研究假設 20
3.2研究對象與時間範圍 21
3.3研究方法與工具 23
3.3.1疫情危機的嚴峻與趨緩之衡量及時間範圍 23
3.3.2責難式發言的定義 25
3.3.3 BERT模型 29
3.3.4 資料處理流程 30
3.3.5 線性迴歸分析模型 31
3.5 研究限制 32
第四章、資料統計分析與模型分析 33
4.1非疫情時期與疫情時期的責難表現變化 33
4.2疫情「嚴峻」與「趨緩」時期的責難表現變化 34
4.2.1以確診人數為衡量基準 34
4.2.2以警戒級數為衡量基準 37
4.2.3責難性之迴歸分析 39
第五章、結論 46
5.1 研究發現 46
5.2 研究建議與展望 50
參考文獻 52
附錄一:第九屆、第十屆立委臉書資料名單 72
附錄二:BERT二元分類模型Python語法 77
參考文獻 References
中文部分
王泰俐,2013。〈「臉書選舉」?2012年臺灣總統大選社群媒體對政治參與行為的影響〉,《東吳政治學報》,31(1):1-52。
王光旭、蔡子弘、陳薇丞,2019,〈政治人物經營臉書策略之研究:以第九屆不分區立法委員為例〉。《民主與治理》 6(2): 1–45。
王嵩音,2006。〈網路使用與選舉參與之研究—以2004年國會議員選舉為例〉,《臺灣民主季刊》,3(4):71-102。
王靖興,2009/12。〈國會議員的立法問政與選區服務之分析:2000年政黨輪替前後的持續與變遷〉,《臺灣政治學刊》,第13卷第2期,頁113-169。
包正豪,2013/11。〈臺灣原住民國會議員代表行為之研究:2002-2012之質詢內容分析〉,《選舉研究》,第20卷第2期,頁103-136。
江豐富、董安琪、劉克智,2004。〈立法院老人議題的質詢趨勢與模式〉,《臺灣經濟預測與政策》,34(2),1-29。
何思奕,2021。〈緊急命令與法律制度的互動分析:從九二一大地震到新冠肺炎的發展演變〉。國立臺灣大學法律學研究所碩士論文,台北市。
吳重禮、林長志,2002。〈我國 2000 年總統選舉前後中央府會關係的政治影響:核四議題與府會互動的評析〉。《理論與政策》16,1:73-98。
莊伯仲、金志聿,2019。〈候選人臉書經營和選舉結果之關聯分析:2016 年區域議會選舉結果〉。《選舉研究》26.1:289-121。
莊伯仲,2005。〈2004 年總統大選國民黨網路選戰策略-行動研究法之觀點〉。《選舉研究》12,2:79-109。
陳奕志,2007。〈影響國會議員問政的因素:第四屆第一會期至第六屆第四會期〉,東吳大學政治系碩士論文。
陳靖婷、廖達琪、陳羿宏、謝昀芸,2021。〈在野黨在議會中發言果真「責難」多──以自動化二元分類法分析高雄市第二屆市議會〉,台灣政治學會年會。12月4-5日。台中:中興大學。
黃秀端,2004。〈政黨輪替前後的立法院內投票結盟〉。《選舉研究》,11(1),1-32。
黃秀端、陳鴻鈞,2006。〈國會中政黨席次大小對互動之影響─第三屆到第五屆的立法院記名表決探析〉,《人文及社會科學集刊》,第18卷第3期,頁385-415
楊婉瑩,2003。〈一致性到分立性政府的政黨合作與衝突-以第四屆立法院為例〉,《東吳政治學報》,第16期,pp.47-93。
鄭自隆,1995,〈1995年三屆立法委員選舉政黨報紙競選廣告訊息與媒體策略分析〉,《選舉研究》,3(2): 1-32。
盛杏湲,2003,<立法機關與行政機關在立法過程中的影響力:一致政府與分立政府的比較>,《台灣政治學刊》,7(2):51-105。
楊婕妤、何品萱、廖達琪、莊澤生,2021。〈立委在意自己的政見嗎?以 AI 技術探索臉書、國會發言與政見之關聯〉,台灣政治學會年會。12月4-5日。台中:中興大學。
廖達琪、林福仁、黃郁慈、劉子昱、李承訓,2012。〈台灣國會議員政見資料庫之建置〉。《選舉研究》。19(2), 129–158。
廖達琪、陳柏宇、李承訓,2013。〈選舉制度與立法者競選政見及立法表現:臺灣立法院第六屆及第七屆區域國會議員之比較〉。《選舉研究》, 20(1), 73–119。
蔡韻竹,2011。〈誰代表誰:國會議員為誰提案?為誰立法?〉。民主、國會與決策學術研討會,5月25-26日,台北:東吳大學。
羅清俊、謝瑩蒔,2008。〈選區規模與立法委員分配政策提案關聯性的研究:第三、四屆立法院的分析〉。《行政暨政策學報》,46期,1-48。
譚躍,2019。〈候選人臉書粉絲專頁的使用、決定因素和影響:以2016年臺灣區域國會議員選舉為例〉。《中華傳播學刊》,36期,81-115。
英文部分
Andeweg, Rudy B. 2013. ‘Parties in Parliament: The Blurring of Opposition’, in Wolfgang C. Müller and Hanne Marthe Narud (eds.), Party Governance and Party Democracy . New York, NY: Springer, 99–114.
Ansell, Trondal,2018. Governing Turbulence: An Organizational- Institutional Agenda, Perspectives on Public Management and Governance, Volume 1, Issue 1, Pages 43–57,
Bakker, T. P.,de Vreese, C. H. 2011.Good news for the future? Young people, internet use, and political participation.Communication Research,38(4),451-470.
Bao H, Cao B, Xiong Y, Tang W 2020.Digital Media’s Role in the covid-19 Pandemic. JMIR Mhealth Uhealth ;8(9):e20156

Baum, Matthew A. 2002. The Constituent Foundations of the Rally-Round-the-Flag Phenomenon’, International Studies Quarterly , 46:2, 263–98.
Beardsley, E. L. 1970. Moral disapproval and moral indignation. Philosophy and Phenomenological Research, 31, 161–176. doi:10.2307/2105737
Benítez, R. Vicente F. 2020. Hercules Leaves (But Does Not Abandon) the Forum of Principle: Courts, Judicial Review, and covid-19. International Journal of Constitutional Law.
Blair, Robert A., Benjamin S. Morse, and Lily L. Tsai. 2017. “Public Health and Public Trust: Survey Evidence from the Ebola Virus Disease Epidemic in Liberia.” Social Science & Medicine 172: 89–97.
Bode, Leticia. (2015). Political News in the News Feed: Learning Politics From Social Media. Mass Communication and Society. 19. 1-25. 10.1080/15205436.2015.1045149.
Benjamin Snyder and Regina Barzilay. 2007. Multiple Aspect Ranking Using the Good Grief Algorithm. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 300–307, Rochester, New York. Association for Computational Linguistics.
Berkowitz, L., & Harmon-Jones, E. (2004). Toward an understanding of the determinants of anger. Emotion (Washington, D.C.), 4(2), 107–130. https://doi.org/10.1037/1528-3542.4.2.107
Blondel, J. 1997. Political Opposition in the Contemporary World. Government and Opposition, 32(4), 462–486. http://www.jstor.org/stable/44484058
Blondel, J. (1968). Party Systems and Patterns of Government in Western Democracies. Canadian Journal of Political Science / Revue Canadienne de Science Politique, 1(2), 180–203. http://www.jstor.org/stable/3231605
Bichard, S. L. 2006. Building blogs: A multi-dimentional analysis of the distribution of the frames on the 2004 presidential candidate web sites. Journalism and Mass Communication Quarterly, 83(2), 329-345.
Bengt Johansson, David Nicolas Hopmann & Adam Shehata (2021) When the rally-around-the-flag effect disappears, or: when the COVID-19 pandemic becomes “normalized”, Journal of Elections, Public Opinion and Parties, 31:sup1, 321-334, DOI: 10.1080/17457289.2021.1924742
Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 115–124, Ann Arbor, Michigan. Association for Computational Linguistics.
Bolleyer, Nicole , and Orsolya Salat 2021. ‘Executive Aggrandizement and Parliamentary Involvement in Times of Crisis: COVID-19 Populism and the Self-Reinforcement of Executive Power’, West European Politic. 44:5-6, pages 1103-1128.
Bentzen J. S. 2021. In crisis, we pray: Religiosity and the COVID-19 pandemic. Journal of economic behavior & organization, 192, 541–583.
Bao H, Cao B, Xiong Y, Tang W.Digital Media’s Role in the COVID-19 Pandemic
JMIR Mhealth Uhealth 2020;8(9):e20156
Brody, Richard A. , and Catherine R. Shapiro 1989. ‘Policy Failure and Public Support: The Iran-Contra Affair and Public Assessment of President Reagan’, Political Behavior , 11:4, 353–69.
Brown, N. 2011 The Dynamics of Democratization: Dictatorship, Development, and Diffusion .Baltimore, MD: Johns Hopkins University Press
Budiharto, W., Meiliana, M. 2018. Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. Journal of Big Data 5, 51 . https://doi.org/10.1186/s40537-018-0164-1
Carr, C. T. 1940. Crisis Legislation in Britain. Columbia Law Review, 40(8), 1309–1325. https://doi.org/10.2307/1117363
Casero-Ripollés, Andreu 2020. “Impact of Covid-19 on the media system. Communicative and democratic consequences of news consumption during the outbreak”. El profesional de la información, v. 29, n. 2, e290223.
Cho, D., & Kwon, K. 2017, November 17. Fake news related to a disaster: Saw a cloud predicting an occurrence of an earthquake. The Dong-a Ilbo. dongA.com. http://www.donga.com/news/article/all/20171117/87305241/1
Chowanietz, C. 2011. Rallying around the flag or railing against the government? Political parties’ reactions to terrorist acts. Party Politics, 17(5), 673–698. https://doi.org/10.1177/1354068809346073
Chu, P.-Y., Tseng, H.-L., & Chen, Y.-J. 2019. Will Facebook encourage citizen participation?: The case of Taiwan legislators’ Facebook strategies. International Journal of Public Administration in the Digital Age, 6(1), 1-14.
Cohen, S. E. 2013, Sandy Marked a Shift for Social Media Use in Disasters.Retrieved from Emergency Management
Chaovalit, P., and Zhou, L. 2005, “Movie review mining: a comparison between supervised and unsupervised classification approaches,” In Proceedings of the 38th Hawaii International Conference on System Sciences, pp.1-9.
Clement J. Number of global social media users 2010-2021. Statista website. Published August 14, 2019. Accessed March 16, 2020. https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
Callaghan, Karen J., and Simo Virtanen. 1993. “Revised Models of the ‘Rally Phenomenon’: The Case of the Carter Presidency.” The Journal of Politics 55 (3): 756–764.
CRICHLOW S.2002. Legislators’ Personality Traits and Congressional Support for Free Trade. Journal of Conflict Resolution.46(5):693-711. doi:10.1177/002200202236170
Dahl, R. A. (Ed.) 1966. Political oppositions in western democracies. New Haven: Yale University Press.
Dang, N.C.; Moreno-García, M.N.; De la Prieta, F.2020. Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics 2020, 9, 483.
De Giorgi, Elisabetta , and Catherine Moury 2015. ‘Conclusions: Great Recession, Great Cooperation?’, The Journal of Legislative Studies , 21:1, 115–20.
Demiros, Iason, et al., 2008. “Media Monitoring by Means of Speech and Language Indexing for Political Analysis.” Journal of Information Technology & Politics 5(1): 133-146.
De Giorgi, Elisabetta , and Francesco Marangoni (2015). ‘Government Laws and the Opposition Parties’ Behaviour in Parliament’, Acta Politica , 50:1, 64–81.
De Swaan, A. 1973. Coalition Theories and Cabinet Formations: A Study of Formal Theories of Coalition Formation Applied to Nine European Parliaments after 1918. Elsevier, Amsterdam.
Dodsworth, Susan, and Nic Cheeseman. 2020Political Trust: The Glue that Keeps Democracies Together. London: Westminster Foundation for Democracy.
Druckman, J., Kifer, M., & Parkin, M. 2009. Campaign Communications in U.S. Congressional Elections. American Political Science Review, 103(3), 343-366. doi:10.1017/S0003055409990037
D’heer, Evelien & Verdegem, Pieter. 2014. An Intermedia Understanding of the Networked Twitter Ecology. Social Media in Politics, pp.81-96
Duverger Maurice et al. Political Parties : Their Organization and Activity in the Modern State. Methuen & Co. ; John Wiley & Sons 1964.
Elena Griglio .2020 Parliamentary Oversight Under the covid-19 Emergency: Striving Against Executive Dominance, The Theory and Practice Legislation doi:10.1080/20508840.2020.1789935
Ellison, N.B., Steinfield, C. and Lampe, C. (2007), The Benefits of Facebook “Friends:” Social Capital and College Students’ Use of Online Social Network Sites. Journal of Computer-Mediated Communication, 12: 1143-1168.
Economist Intelligence Unit. (2021) Democracy index 2021: the China challenge. London: EUI.
Eric L Windholz (2020) Governing in a pandemic: from parliamentary sovereignty to autocratic technocracy, The Theory and Practice of Legislation, 8:1-2, 93-113, DOI: 10.1080/20508840.2020.1796047
Fast-track legislation: constitutional implications and safeguards, 15th report of session 2008-09, Vol. 1: Report, 第 1 卷
Fairlie, John A. 1918. ‘British War Cabinets’, Michigan Law Review , 16:7, 471.[Crossref], [Google Scholar]
Feinstein, Yuval .2018. ‘One Flag, Two Rallies: Mechanisms of Public Opinion in Israel during the 2014 Gaza War’, Social Science Research , 69, 65–82.
Fréchet, Nadjim, Justin Savoie, and Yannick Dufresne .2019. “Analysis of Text-Analysis Syllabi: Building a Text-Analysis Syllabus Using Scaling.” PS: Political Science & Politics, 1-6. doi:10.1017/S1049096519001732
Ginsburg, T & Versteeg, M .2020. States of Emergencies: Part I, Harvard Law Review
Ginsburg, T & Versteeg, M .2020. States of Emergencies: Part II, Harvard Law Review .
Grimm, R.,2016 ‘The rise of the German Eurosceptic party Alternative für Deutschland: between Ordoliberal critique and popular anxiety’, International Political Science Review, 3 , pp. 264–78
Ganghof, Steffen,2012. Equality-Based Comparison: How to Justify Democratic Institutions in the Real World . Available at SSRN: https://ssrn.com/abstract=2176146
Grimmer, J., & Stewart, B. 2013. Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 21(3), 267-297. doi:10.1093/pan/mps028
Haidt, J. 2001. The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108, 814–834. doi:10.1037/0033-295X.108.4.814
Haselmayer, M., Jenny, M .2017. Sentiment analysis of political communication: combining a dictionary approach with crowdcoding. Qual Quant 51, 2623–2646. https://doi.org/10.1007/s11135-016-0412-4
Hetherington, Marc J. , and Michael Nelson .2003. ‘Anatomy of a Rally Effect: George W. Bush and the War on Terrorism’, Political Science and Politics , 36:1, 37–42.
Huang, CM., Chan, E. & Hyder, A.A.2010. Web 2.0 and Internet Social Networking: A New tool for Disaster Management? - Lessons from Taiwan. BMC Med Inform Decis Mak 10, 57. https://doi.org/10.1186/1472-6947-10-57
Ishmael Mugari , Kevin Cheng (Reviewing editor). 2020 .The dark side of social media in Zimbabwe: Unpacking the legal framework conundrum, Cogent Social Sciences, 6:1
Jan Petrov.2020. ‘The covid-19 Emergency in the Age of Executive Aggrandizement: What Role for Legislative and Judicial Checks?’ (2020) The Theory and Practice of Legislation, doi:10.1080/20508840.2020.1788232
Jefferys, Kevin 1991. The Churchill Coalition and Wartime Politics 1940-1945 . Manchester: Manchester University Press.
Johnson, T.,Perlmutter, D.2011.New Media Campaigning and the 2008 Facebook Election.New York, NY:Routledge.
Khakee, Anna. .2009. “Securing Democracy? A Comparative Analysis of Emergency Powers in Europe.” Geneva: Geneva Centre for the Democratic Control of Armed Forces.
Kim, C.M. 2020. Social Media Campaigns: Strategies for Public Relations and Marketing (2nd ed.). Routledge. https://doi.org/10.4324/9781003020196
Klaus H. Goetz, Dorte Sindbjerg Martinsen. 2021. covid-19: a dual challenge to European liberal democracy. West European Politics 44:5-6
Kruikemeier, S.,van Noort, G.,Vliegenthart, R.,de Vreese, C. H.2014.Unraveling the effects of active and passive forms of political Internet use: Does it affect citizens' political involvement?.New Media & Society,16(6),903-920.
King, A. 1976. Modes of Executive-Legislative Relations: Great Britain, France, and West Germany. Legislative Studies Quarterly, 1(1), 11–36.
Kushin, M. J.,Yamamoto, M.2010.Did social media really matter? College students' use of social media and political decision making in the 2008 election.Mass Communication & Society,13,608-630.
Lai, Brian , and Dan Reiter .2005. ‘Rally ’Round the Union Jack? Public Opinion and the Use of Force in the United Kingdom, 1948-2001’, International Studies Quarterly , 49:2, 255–72.
Ionescu, G. (1968), Politics in a New Key. Government and Opposition, 3: 441-452. https://doi.org/10.1111/j.1477-7053.1968.tb01342.x
John Wilkerson and Andreu Casas .2017. Large-Scale Computerized Text Analysis inPolitical Science: Opportunities and Challenges.Annual Review of Political Science20:1, 529-544
Levitsky, Steven & Way, Lucan. 2015. The Myth of Democratic Recession. Journal of Democracy. 26. 45-58. 10.1353/jod.2015.0007.
Lin, J. 2016 .Differential gains in SNSs: Effects of active vs. passive Facebook political participation on offline political participation and voting behavior among first-time and experienced voters. Asian Journal of Communication,26(3),278-297.
Lin, Yu-Ru, Drew Margolin, and David Lazer, 2015. “Uncovering Social Semantics from Textual Traces: A Theory Driven Approach and Evidence from Public Statements of US Members of Congress.” Journal of the Association for Information Science and Technology 67: 2072-2089.
Leahy, Pat , and Fiach Kelly (2020). ‘FG and FF to Start Government Formation Talks Propelled by Covid-19’, The Irish Times, March 11.
Lindberg, S., 2009. Democratization by Elections: A New Mode of Transition Baltimore, MD: Johns Hopkins University Press
Linh Dang-Xuan, Stefan Stieglitz, Jennifer Wladarsch & Christoph Neuberger .2013. An Investigation of Influentials and The Role of Sentiment in Political Communciation on Twitter During Election Periods, Information, Communication & Society, 16:5, 795-825, DOI: 10.1080/1369118X.2013.783608
Lust, Ellen, and David Waldner. 2015. “Unwelcome Change: Understanding, Evaluating, and Extending Theories of Democratic Backsliding.” http://pdf.usaid.gov/pdf_docs/ PBAAD635.pdf
M. Ibrahim, O. Abdillah, A. F. Wicaksono and M. Adriani, 2015 "Buzzer Detection and Sentiment Analysis for Predicting Presidential Election Results in a Twitter Nation," 2015 IEEE International Conference on Data Mining Workshop (ICDMW),, pp. 1348-1353, doi: 10.1109/ICDMW.2015.113.
Malle, B. F., Guglielmo, S., & Monroe, A. E., 2014. A Theory of Blame. Psychological Inquiry, 25(2): 147-186.
Melanie Dietz, Sigrid Roßteutscher, Philipp Scherer & Lars-Christopher Stövsand (2021) Rally Effect in the Covid-19 Pandemic: The Role of Affectedness, Fear, and Partisanship, German Politics, DOI: 10.1080/09644008.2021.2016707
Merchant, R. M., & Lurie, N. (2020). Social Media and Emergency Preparedness in Response to Novel Coronavirus. JAMA, 323(20), 2011–2012.
Murakami Wood, David & Monahan, Torin. 2019. Editorial: Platform Surveillance. Surveillance & Society. 17. 1-6. 10.24908/ss.v17i1/2.13237.
Mohamad, S.M. 2020, Creative Production of ‘COVID-19 Social Distancing’ Narratives on Social Media. Tijds. voor econ. en Soc. Geog., 111: 347-359.
Monica Ancu Ph.D. & Raluca Cozma Ph.D. (2009) MySpace Politics: Uses and Gratifications of Befriending Candidates, Journal of Broadcasting & Electronic Media, 53:4, 567-583, DOI: 10.1080/08838150903333064
MAIR, Peter, On parties, party systems and democracy : selected writings of Peter Mair, Colchester : ECPR Press, 2014, ECPR Essays - http://hdl.handle.net/1814/32492
Marangoni, Francesco , and Luca Verzichelli . 2015. ‘From a Technocratic Solution to a Fragile Grand Coalition: The Impact of the Economic Crisis on Parliamentary Government in Italy’, The Journal of Legislative Studies , 21:1, 35–53.
Matalon, Y., Magdaci, O., Almozlino, A. et al. 2021 .Using sentiment analysis to predict opinion inversion in Tweets of political communication. Sci Rep 11, 7250
Myoung-Gi Chon. 2022. Coping with mental health issues via communicative action in the digital age: testing cybercoping models. Journal of Communication in Healthcare 0:0, pages 1-11.
Mueller John E. 1985. War Presidents and Public Opinion. Lanham MD: University Press of America.
Norpoth, H. 1994. Wiedervereinigung und Wahlentscheidung. In: Klingemann, HD., Kaase, M. (eds) Wahlen und Wähler. Schriften des Zentralinstituts für sozialwissenschaftliche Forschung der Freien Universität Berlin, vol 72. VS Verlag für Sozialwissenschaften, Wiesbaden. https://doi.org/10.1007/978-3-322-86406-2_13
Olsson, Stefan .2009. ‘Defending the Rule of Law in Emergencies through Checks and Balances’, Democracy and Security , 5:2, 103–26.
Park, S., Strover, S., Choi, J., & Schnell, M. 2021. Mind games: A temporal sentiment analysis of the political messages of the Internet Research Agency on Facebook and Twitter. New Media & Society. https://doi.org/10.1177/1461444821014355
Proksch, Sven-Oliver , Will Lowe, Jens Wäckerle, and Stuart Soroka .2019. ‘Multilingual Sentiment Analysis: A New Approach to Measuring Conflict in Legislative Speeches’, Legislative Studies Quarterly , 44:1, 97–131.
Prati, G., L. Pietrantoni, and B. Zani. 2011. “Compliance with Recommendations for Pandemic Influenza H1N1 2009: The Role of Trust and Personal Beliefs.” Health Education Research 26 (5): 761–769.
Peter D. Turney, 2002, Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews, Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, pp. 417-424.
Palen, L., Vieweg, S., Liu, S. & Hughes. A. L. 2009. Crisis in a networked world: Features of computer- mediated communication in the April 16, 2007, Virginia Tech event. Social Science Computer Review, 2009, 467-480.
Quinn KM, Monroe BL, Colaresi M, Crespin MH, Radev DR. 2010. How to analyze political attention with minimal assumptions and costs. Am. J. Polit. Sci. 54(1):209–28
Rodan Garry. 1996. Political Oppositions in Industrialising Asia. London: Routledge.
Riker, W.H. 1962. The Theory of Political Coalitions. Yale University Press, New Haven.
Sandoval-Almazán, R., & Cruz, D.V. 2018.”Facebook impact and sentiment analysis on political campaigns”. Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age.
Sylvia Kritzinger, Martial Foucault, Romain Lachat, Julia Partheymüller, Carolina Plescia & Sylvain Brouard (2021) ‘Rally round the flag’: the COVID-19 crisis and trust in the national government, West European Politics, 44:5-6, 1205-1231, DOI: 10.1080/01402382.2021.1925017
Sandoval Almazan, Rodrigo & Valle-Cruz, David. 2020. Sentiment Analysis of Facebook Users Reacting to Political Campaign Posts. Digital Government: Research and Practice. 1. 1-13. 10.1145/3382735.
Sartori, G. 1966. Opposition and Control: Problems and Prospects. Government and Opposition, 1(2), 149–154. http://www.jstor.org/stable/44481787
Sartori, G. 1976. Parties and Party Systems: A Framework for Analysis, vol. 1. Cambridge: Cambridge University Press.
S. Ward. 2001, ‘Political Organisations and the Internet: Towards a Theoretical Framework for Analysis’, paper prepared for the ECPR joint sessions, Grenoble, 6–11 April 2001.
Sarcevic, A., Palen, L., White, J., Starbird, K., Bagdouri, M., & Anderson, K. 2012. " Beacons of hope" in decentralized coordination: learning from on-the-ground medical twitterers during the 2010 Haiti earthquake. In Proceedings of the ACM 2012 conference on computer supported cooperative work (pp. 47-56).
Schapiro Leonard and Ellen De Kadt. 1972. Political Opposition in One-Party States. London: Macmillan.
Sang-Hun, C.,2017. ‘South Korea removes President Park Geun-Hye’, New York Times, 9 March 2017, , accessed 3
Stojanovska-Stefanova,A. & Tasev,H.2020.The Mass Media Freedom in a State of Emergency: Infodemic vs. COVID-19 Pandemic. SEEU Review,15(1) 43-59.
Scanlon, Joseph. 2011. Research about the Mass Media and Disaster. 10.1201/b13161-12.
Shirky, C. 2011. The Political Power of Social Media: Technology, the Public Sphere, and Political Change. Foreign Affairs, 90(1), 28–41. http://www.jstor.org/stable/25800379
Sisk, T., .2017. Democracy and Resilience: Conceptual Approaches and Considerations (Stockholm:International IDEA, 2017), <http://www.idea.int/gsod>, accessed X Month YEAR
Smith, A. M. 2005. Responsibility for Attitudes: Activity and Passivity in MentalLife. Ethics, 115(2), 236–271. https://doi.org/10.1086/426957
Strom, K. 1990. A Behavioral Theory of Competitive Political Parties. American Journal of Political Science, 34(2), 565–598. https://doi.org/10.2307/2111461
Strøm, Kaare 1990. Minority Government and Majority Rule . Cambridge University Press.
Shelley Boulianne (2015) Social media use and participation: a meta-analysis of current research, Information, Communication & Society, 18:5, 524-538
Swaan, A. de. 1973. Coalition theories and cabinet formations. A study of formaltheories of coalition formation applied to nine European parliaments after 1918. Amsterdam, New York : Elsevier Scientific Pub. Co
Sweetser, K. D.,Lariscy, R. W.2008.Candidates make good friends: An analysis of candidates' uses of Facebook. International Journal of Strategic Communication,2(3),175-198.
Tumasjan, Andranik & Sprenger, Timm & Sandner, Philipp & Welpe, Isabell. (2010). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. Word. Journal Of The International Linguistic Association. 10.
Túñez López, Miguel & Sixto, B.A.. 2011. Social networks, politics and Commitment 2.0: Spanish MPs on Facebook. Revista Latina de Comunicación Social. 10.4185/RLCS-66-2011-930-210-246-EN.
Vaccari, C.,Valeriani, A.2015.Follow the leader! Direct and indirect flows of political communication during the 2013 general election campaign.New Media & Society,17(7),1025-1042.
VESE, D. 2021. Governing Fake News: The Regulation of Social Media and the Right to Freedom of Expression in the Era of Emergency. European Journal of Risk Regulation, 1-41. doi:10.1017/err.2021.48
Vie Publique. 2018. “Etat d’urgence et autres régimes d’exception”.https://www.viepublique.fr/actualite/faq-citoyens/etat-urgence-regime-exception/
Weinblum, Sharon & Brack, Nathalie. 2011. 'Political Opposition': Towards a Renewed Research Agenda. Interdisciplinary Political Studies. 1.
Williams, C. B., & Gulati, G. J. ‘Jeff.’ 2013. Social networks in political campaigns: Facebook and the congressional elections of 2006 and 2008. New Media & Society, 15(1), 52–71. https://doi.org/10.1177/1461444812457332
Wouter van Atteveldt, Jan Kleinnijenhuis, Nel Ruigrok & Stefan Schlobach 2008.Good News or Bad News? Conducting Sentiment Analysis on Dutch Text to Distinguish Between Positive and Negative Relations, Journal of Information Technology & Politics, 5:1, 73-94, DOI: 10.1080/19331680802154145
Valenzuela, S., Park, N. and Kee, K.F. 2009, Is There Social Capital in a Social Network Site?: Facebook Use and College Students' Life Satisfaction, Trust, and Participation. Journal of Computer-Mediated Communication, 14: 875-901
Vanessa A. Boese, Amanda B. Edgell, Sebastian Hellmeier, Seraphine F. Maerz & Staffan I. Lindberg .2021, How democracies prevail: democratic resilience as a two-stage process, Democratization, 28:5, 885-907, DOI: 10.1080/13510347.2021.1891413
Yurkowski, S. 2018. Strict Party Discipline: Why it is Necessary for Responsible and Accountable Government. Political Science,
Zaibert, L.2005. Five ways Patricia can kill her husband: A theory of intentionality and blame. Chicago, IL: Open Court.
Zhang, L, Wang, S, Liu, B..2018. Deep learning for sentiment analysis: A survey. WIREs Data Mining Knowl Discovery.; 8:e1253.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code