Responsive image
博碩士論文 etd-0103120-100929 詳細資訊
Title page for etd-0103120-100929
論文名稱
Title
考慮身體移動與姿勢效應之生理訊號雷達研究與發展
Research and Development of Vital-Sign Radar Considering the Effects of Body Movement and Posture
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-01-31
繳交日期
Date of Submission
2020-02-03
關鍵字
Keywords
隨機身體移動抵銷、跌倒偵測、生理訊號偵測、姿態偵測、自我注入鎖定雷達
fall detection, random body movement cancellation, posture detection, Self-injection-locked (SIL) radar, vital sign detection
統計
Statistics
本論文已被瀏覽 5951 次,被下載 0
The thesis/dissertation has been browsed 5951 times, has been downloaded 0 times.
中文摘要
與接觸式或者是穿戴式監測生理訊號的裝置相比,遠距離生理訊號監測裝置更受到關注,由於受測者不受連接線的限制以及電池使用時間的影響,生理訊號雷達漸漸受到大家喜愛,因為雷達訊號可以遠距非接觸偵測並能穿透障礙物。然而生理訊號雷達的技術瓶頸在於如何克服身體移動效應。當受測者移動他的身體,雷達偵測所輸出的訊號主要被身體移動效應所主宰,很難過濾出呼吸及心跳訊號。此外,假如能進一步偵測身體的活動及姿態,這樣在監測健康上將扮演更重要的角色。
本論文提出一自我鎖定及交互自我鎖定雷達去偵測身體移動下生物體的呼吸及心跳。為了降低身體移動效應,其中一雷達使用兩個壓控振盪器,各別自我注入鎖定以及交互注入鎖定,並使用兩個不同增益的天線,而能抵銷大部分的身體移動訊號,並保留生理訊號。另一雷達是基於自我注入鎖定技術並利用在受測者前後的兩支天線去發射以及重新發射一連續波至身體的前後兩側,而能克服大擺幅身體移動效應進行即時生理訊號偵測。
本論文最後提出一單脈衝生理訊號雷達,其結合連續波及自我注入鎖定技術而具有高靈敏度去偵測與定位人體上之生理訊號。此雷達利用連續波和場型及自我注入鎖定差場型來接收與處理回波訊號,因此能產出單脈衝比例來決定回波訊號的到達方向,藉此測得人體上之生理訊號的垂直位置做為姿勢分類用途。此外,此雷達可偵測跌倒過程中身體姿勢的變化做為跌倒警報用途。
Abstract
Compared to the contact or wearable devices to monitor vital signs, remote detection devices attract more attention because the subject to be monitored is not confined to the limitations of wire connections or battery life. Therefore, the radar for monitoring vital signs becomes more and more popular because it is remote, contactless and it penetrates obstacles. However, the bottleneck of the radar technique is how to overcome the random body movement effect. When the subject moves his body, the radar detection output is dominated by the body movement signal and it is difficult to identify the respiration and heartbeat frequencies in the output spectrum. Apart from this, if the radar can further detect body motion and posture, it can monitor health more effectively in our daily life.
This dissertation presents two vital-sign radars for monitoring vital signs of a human subject with random body movements. To detect vital signs with reduced body motion artifacts, one radar uses two voltage-controlled oscillators that are self-injection locked (SIL) to themselves and mutually injection locked to each other. Additionally, it uses two different gain antennas. Consequently, this radar cancels out most of the body motion artifacts while preserving the vital sign signals. The other radar is based on SIL technology with two antennas to transmit and retransmit a continuous wave to opposite sides of a human body for real-time monitoring vital signs with large body movements.
This dissertation finally presents a monopulse radar that combines continuous-wave (CW) and SIL technologies with high sensitivity to detect and localize vital signs of a human subject. The radar utilizes a CW sum pattern and an SIL difference pattern to receive and process the echo signal from the subject, so it can produce a monopulse ratio to determine the direction of arrival of the echo signal. With this capability, this radar can measure the vertical position of the subject’s vital signs for posture classification purpose. Moreover, this radar can be used for a fall alarm by detecting the change of posture during a fall.
目次 Table of Contents
Contents


1 Introduction 1
1.1 Research Motivation 1
1.2 Random Body Movement Cancellation 2
1.3 Posture and Fall Detection 3
1.4 Dissertation Overview 4
2 An SMIL Radar with RBMC 6
2.1 SMIL Radar 6
2.1.1 System Architecture 7
2.1.2 Antenna Setup 9
2.1.3 System Model 10
2.2 Experiment on Actuator-Controlled Movement 13
2.2.1 Experimental Setup 13
2.2.2 Comparison of Results 19
2.3 Monitoring Vital Signs with Random Body Movements 23
3 T&RT SIL Radar for Large RBMC 28
3.1 T&RT SIL Radar 28
3.1.1 System Architecture and Model 29
3.1.2 Clutter Echoes 32
3.2 Calibration Method 34
3.2.1 Calibration Setup 34
3.2.2 Calibration Procedure 36
3.3 Monitoring Vital Signs with Large Body Movements 42

4 Hybrid Continuous-Wave and Self-Injection-Locking Monopulse Radar 49
4.1 Hybrid CW and SIL Monopulse Radar 49
4.1.1 System Architecture 51
4.1.2 System Model 52
4.1.3 Calibration Procedure 55
4.2 Posture and Fall Detection 57
4.2.1 Posture Detection 57
4.2.2 Fall Detection 60
5 Conclusions 64
Bibliography 65
Vita 71
參考文獻 References
Bibliography




[1] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, pp. 1530–1530, Oct. 1975.
[2] J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, “Microwave apexcardiography,” IEEE Trans. Microw. Theory Techn., vol. 27, no. 6, pp. 618–620, Jun. 1979.
[3] N. A. Fox, C. Heneghan, M. Gonzalez, R. B. Shouldice, and P. D. Chazal, “An evaluation of a non-contact biomotion sensor with actimetry,” in Annu. IEEE Int. Eng. Med. Biol. Soc. Conf., 2007, pp. 2664–2668.
[4] W. Massagram, V. M. Lubecke, and O. Boric-Lubecke, “Microwave noninvasive sensing of respiratory tidal volume,” in Annu. IEEE Int. Eng. Med. Biol. Soc. Conf., 2009, pp. 4832–4835.
[5] J. Tu and J. Lin, “Respiration harmonics cancellation for accurate heart rate measurement in non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013, pp. 1–3.
[6] Y. F. Chen, D. Misra, H. Wang, H.-R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697–701, Jul. 1986.
[7] K.-M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 47, no. 1, pp. 105–114, Jan. 2000.
[8] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
[9] H. Förster, O. Ipsiroglu, R. Kerbl, and E. Paditz, “Sudden infant death and pediatric sleep medicine,” Wien Klin Wochenschr., vol. 115, no. 24, pp. 847–849, Dec. 2003.
[10] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in Proc. 29th Annu. IEEE Int. Eng. Med. Biol. Soc. Conf., Lyon, France, Aug. 2007, pp. 2300–2302.
[11] B. Jokanovic, M. Amin, and F. Ahmad, “Radar fall motion detection using deep learning,” in Proc. IEEE Radar Conf., May 2016, pp. 1–6.
[12] C. Li, J. Lin, and Y. Xiao, “Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector,” in Proc. IEEE 28th Annu. Int. Conf. Eng. Med. Biol. Soc., New York, NY, USA, Aug. 2006, pp. 2235–2238.
[13] M. Alekhin, L. Anishchenko, A. Tataraidze, S. Ivashov, V. Parashin, L. Korostovtseva, Y. Sviryaev, and A. Bogomolov, “A novel method for recognition of bioradiolocation signal breathing patterns for noncontact screening of sleep apnea syndrome,” Int. J. Antennas Propag., vol. 2013, pp. 1-8, 2013.
[14] W. Massagram, V. M. Lubecke, A. Høst-Madsen, and O. Boric-Lubecke, “Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp. 2542–2549, Oct. 2009.
[15] J. E. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke, “Dual-frequency technique for assessment of cardiopulmonary effective RCS and displacement,” IEEE Sensors J., vol. 12, no. 3, pp. 574–582, Mar. 2012.
[16] C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3117–3123, Nov. 2012.
[17] F. K. Wang, T. S. Horng, K. C. Peng, J. K. Jau, J. Y. Li, and C. C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan. 2013.
[18] C. Gu, “Short-range noncontact sensors for healthcare and other emerging applications: A review,” Sensors, vol. 16, no. 8, p. 1169, Aug. 2016.
[19] V. T. Tu, L. Ouvry and A Sibille, ” Time domain complex radar cross section of human body for breath-activity monitoring,” Eur. Conf. Antennas Propag., Paris, France, Mar. 2017, pp. 421-425
[20] J. E. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke,“Radar cross section of human cardiopulmonary activity for recumbent subject,”in Proc. IEEE Eng. Med. Boil. Soc. Conf., Minneapolis, MN, Sep. 2009, pp. 4808-4811.
[21] O. Postolache, P. S. Girão, G. Postolache, and R. N. Madeira, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc. IEEE Int. Workshop Med. Meas. Appl., Ottawa, ON, Canada, Apr. 2010, pp. 47–52.
[22] J. C. Y. Lai, Y. Xu, E. Gunawan, E. C. Chua, A. Maskooki, Y. L. Guan, K. S. Low, C. B. Soh, and C. L. Poh, “Wireless sensing of human respiratory parameters by low-power ultrawideband impulse radio radar,” IEEE Trans. Instrum. Meas., vol. 60, no. 3, pp. 928–938, Mar. 2011.
[23] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076–2085, May 2013.
[24] G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812–2822, Nov. 2014.
[25] S. Kazemi, A. Ghorbani, H. Amindavar, and C. Li, “Cyclostationary approach to Doppler radar heart and respiration rates monitoring with body motion cancelation using radar Doppler system,” Biomed. Signal Process. Control, vol. 13, no. 4, pp. 79–88, Sep. 2014.
[26] Q. Lv, Y. Dong, Y. Sun, C. Li, and L. Ran, “Detection of bio-signals from body movement based on high-dynamic-range Doppler radar sensor,” in Proc. IEEE MTT-S Int. Microw. Workshop Series RF Wireless Technol. Biomed. Healthcare Appl., Taipei, Taiwan, Sep. 2015, pp. 88–89.
[27] S. Tomii and T. Ohtsuki, “Heartbeat detection by using Doppler radar with wavelet transform based on scale factor learning,” in Proc. IEEE Int. Conf. Comm., London, U.K., Jun. 2015, pp. 483–488.
[28] I. Mostafanezhad, E. Yavari, O. Boric-Lubecke, V. M. Lubecke, and D. P. Mandic, “Cancellation of unwanted Doppler radar sensor motion using empirical mode decomposition,” IEEE Sensors J., vol. 13, no. 5, pp. 1897–1904, May 2013.
[29] Q. Lv, L. Chen, K. An, J. Wang, H. Li, D. Yen, J. Huangfu, C Li, and L. Ran, “Doppler vital signs detection in the presence of largescale random body movements,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 9, pp. 4261–4270, Sep. 2018.
[30] C. Gu, J Wang, and J Lien, “Deep neural network based body movement cancellation for doppler radar vital sign detection,” IEEE MTT-S Int. Wireless Symp., Guangzhou, China, May, 2019, pp. 1-3.
[31] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[32] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign monitoring,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, Jun. 2009, pp. 1325–1328.
[33] C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4678–4688, Dec. 2013.
[34] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[35] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang, and T.-S. Horng, “Same side dual SIL-radar system for real-time vital sign monitoring with random body movement cancellation,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.
[36] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang, and T.-S. Horng, “A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4812–4822, Dec. 2016.
[37] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “A single radar-based vital sign monitoring system with resistance to large body motion,” in IEEE MTT-S Int. Microw. Symp. Dig., Honololu, HI, USA, Jun. 2017, pp. 1–4.
[38] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5324–5333, Dec. 2017.
[39] J. Tu, T. Hwang, and J. Lin, “Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1937–1946, Jun. 2016.
[40] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti, “A high reliability wearable device for elderly fall detection” IEEE Sens. J., vol. 15, no. 8, pp. 4544-4553, Aug. 2015.
[41] T. Degen, H. Jaeckel, M. Rufer, and S. Wyss, “SPEEDY: a fall detector in a wrist watch,” in Proc. 7th IEEE Int. Symp. Wearable Comput., 2003, pp. 184–187.
[42] M. Yu, A. Rhuma, S. M. Naqvi, L. Wang, and J. Chambers, ‘‘A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment,’’ IEEE Trans. Inf. Techn. Biomed., vol. 16, no. 6, pp. 1274–1286, Nov. 2012.
[43] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “View adaptive neural networks for high performance skeleton-based human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8, pp. 1963–1978, Aug. 2019.
[44] M. Popescu, Y. Li, M. Skubic, and M. Rantz, “An acoustic fall detector system that uses sound height information to reduce the false alarm rate,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2008, pp. 4628-4631.
[45] M. Salman Khan, M. Yu, P. Feng, L. Wang, and J. Chambers, “An unsupervised acoustic fall detection system using source separation for sound interference suppression,” Signal Proc., vol. 110, pp. 199-210, May 2015.
[46] Y. Kim and H. Ling, “Human activity classification based on micro Doppler signatures using a support vector machine,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1328–1337, May 2009.
[47] M. K. Dremina and L. N. Anishchenko, “Contactless fall detection by means of CW bioradar,” in Progress in Electromag. Research Symp. Dig., 2016, pp. 2912–2915.
[48] B. Jokanović and M. Amin, “Fall detection using deep learning in range-Doppler radars,” IEEE Trans. Aero. Elec. Sys., vol. 54, pp. 180-189, Feb. 2018.
[49] B. Erol and M. G. Amin, “Fall motion detection using combined range and Doppler features,” in Proc. 24th Eur. Sig. Proc. Conf., 2016, pp. 2075–2080.
[50] H. Wang, L. Ren, E. Mao, A. E. Fathy, “Phase based motion characteristics measurement for fall detection by using stepped-frequency continuous wave radar,” in Proc. IEEE Top. Conf. Biomed. Wireless Techn. Netw. Sens. Syst., 2016, pp. 43-45.
[51] M. Mercuri, P. J. Soh, G. Pandey, P. Karsmakers, G. A. E. Vandenbosch, P. Leroux, and D. Schreurs, “Analysis of an indoor biomedical radar-based system for health monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2061-2068, May 2013.
[52] G. Diraco, A. Leone, and P. Siciliano, “A radar-based smart sensor for unobtrusive elderly monitoring in ambient assisted living applications,” Biosensors, vol. 7, no. 4. pp. 55, Nov. 2017.
[53] Z. Baird, S. Rajan, and M. Bolic, “Classification of human posture from radar returns using ultra-wideband radar,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2018, pp. 18-21.
[54] A. Kılıç, İ. Babaoğlu, A. Babalık, and A. Arslan, “Through-wall radar classification of human posture using convolutional neural networks,” Int. J. Antennas Propag., vol. 2019, Article ID 7541814, pp. 1-10, Mar. 2019.
[55] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, “Capturing the human figure through a wall,” ACM Trans. Graph., vol. 34, no. 6, pp. 219, 2015.
[56] M. Hiraki and Y. Motoda, “Millimeter-wave cost-effective phased-array radar with orthogonally located linear Tx and Rx arrays,” in IEEE Int. Microw. Symp. Dig., 2019, pp. 540-543.
[57] M. Zhao, T. Li, M. A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi “Through-wall human pose estimation using radio signals,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7356–7365.
[58] D. Sasakawa, N. Honma, T. Nakayama, and S. Iizuka, “Human posture identification using a MIMO array,” Electronics, vol. 7, no. 3, pp. 37-49, Mar. 2018.
[59] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[60] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 696-704, Jan. 2013.
[61] H. Gheidi and A. Banai, “An ultra broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131 - 2139, Aug. 2011.
[62] T.-Y. Chin, K.-Y. Lin, S.-F. Chang and C.-C. Chang, “A fast clutter cancellation method in quadrature Doppler radar,” in IEEE MTT-S Int Microw. Symp. Dig., Anaheim, CA, May. 2010, pp. 764-767.
[63] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
[64] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073–1079, May 2007.
[65] M. Del Prete, D. Masotti, N. Arbizzani, and A. Costanzo, “Remotely identify and detect by a compact reader with mono-pulse scanning capabilities,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 641–650, Jan. 2013.
[66] J.-Y Liu, P.-Y Lyu, S.-F. Chang, “A single-layer dynamic monopulse radar for precise angle-of-arrival detection in short-range open space,” in Proc. Asia-Pacific Microw. Conf., 2017, pp. 101–104.
[67] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.103.20
論文開放下載的時間是 校外不公開

Your IP address is 3.144.103.20
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code