Responsive image
博碩士論文 etd-0105124-214601 詳細資訊
Title page for etd-0105124-214601
論文名稱
Title
基於稀疏非負矩陣分解的電子商務推薦系統-以寵物網購平台為例
Recommendation Systems based on Non-negative Matrix Factorization-A Case Study of Pet E-commerce Platforms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-01-24
繳交日期
Date of Submission
2024-02-05
關鍵字
Keywords
推薦系統、非負矩陣分解、非平滑非負矩陣分解、電子商務、寵物用品
Recommendation Systems, Non-negative Matrix Factorization, Nonsmooth Non-negative Matrix Factorization, E-commerce, Pet Supplies
統計
Statistics
本論文已被瀏覽 160 次,被下載 2
The thesis/dissertation has been browsed 160 times, has been downloaded 2 times.
中文摘要
摘要
本研究聚焦於電子商務領域的蓬勃發展以及個性化推薦系統的重要性。隨著電子商務的快速擴展,企業面臨著從傳統大量生產轉向個性化定制的挑戰。這種轉變要求企業提供符合多樣客戶需求的產品,而推薦系統成為解決大量信息問題的有效途徑。客戶需要處理大量信息以選擇符合其需求的商品,而推薦系統能夠幫助客戶過濾和推薦出最符合需求的商品,提供個性化的購物體驗。

推薦系統的應用對於電子商務至關重要,不僅能夠提高客戶滿意度,還有助於企業提高銷售額。透過推薦系統,企業能更好地了解客戶的喜好和需求,提供更精準的商品推薦,進一步加強客戶忠誠度。因此,推薦系統成為能夠重塑電子商務世界的重要商業工具。大型電商網站已廣泛應用推薦系統,提高客戶購物體驗,並增加銷售額。串流媒體平台如Netflix、YouTube、Spotify等也透過推薦系統提高使用者黏著度。
因此,在寵物食品用品等相關產業蓬勃發展,以及電子商務的技術日趨成熟的背景下,推薦系統在寵物食品用品電商平台領域上的應用,應為一個可進行研究之議題。本研究主要想利用「基於稀疏非負矩陣分解的做法」,以NMF(Non-negative Matrix Factorization)和nsNMF(Nonsmooth Non-negative Matrix Factorization)為例,探討推薦系統的實際應用結果,並分析其中的應用差異。
Abstract
Abstract
This research focuses on the flourishing development of the e-commerce sector and the significance of personalized recommendation systems. With the rapid expansion of e-commerce, businesses are challenged to shift from traditional mass production to personalized customization. This transformation requires companies to offer products that cater to diverse customer needs, and recommendation systems have become an effective way to address the challenges posed by the abundance of information. Customers often deal with a vast amount of information when selecting products that meet their needs, and recommendation systems assist them in filtering and suggesting items that align with their preferences, providing a personalized shopping experience.
The application of recommendation systems is crucial in the realm of e-commerce, not only enhancing customer satisfaction but also contributing to increased sales. Through recommendation systems, businesses can gain a better understanding of customer preferences and needs, offering more precise product recommendations to strengthen customer loyalty. Therefore, recommendation systems have become a vital business tool capable of reshaping the e-commerce landscape. Major e-commerce websites widely implement recommendation systems to improve customer shopping experiences and boost sales. Streaming platforms such as Netflix, YouTube, Spotify, and others also leverage recommendation systems to enhance user engagement.
Given the thriving development in related industries, such as pet food and supplies, and the increasing maturity of e-commerce technology, the application of recommendation systems in this field becomes a topic worthy of in-depth research. This paper aims to utilize the "approach based on sparse non-negative matrix factorization." Using examples of NMF (Non-negative Matrix Factorization) and nsNMF (Nonsmooth Non-negative Matrix Factorization), we explore the practical application results of recommendation systems and analyze the variations in their applications.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 vii
表次 viii
第一章、研究背景、動機及目的 1
第一節、研究背景 1
第二節、研究動機 3
第三節、研究目的 4
第二章、文獻探討 5
第一節、推薦系統 5
第二節、NMF 7
第三節、nsNMF 8
第四節、推薦系統在電子商務上的應用 10
第三章、研究設計及方法 11
第一節、研究方法 11
第二節、研究資料 14
第三節、資料預處理過程 15
第四節、分析客戶行為和產品特性探索 19
第四章、研究成果 31
第一節、資料集說明 31
第二節、實驗說明 34
第五章、研究結論 49
第一節、研究結果 49
第二節、研究限制與未來研究方法 53
第六章、參考文獻 54
附錄 本研究各分群實驗結果 58



參考文獻 References
[1] Pine, B. J., Victor, B., & Boynton, A. C. (1993). Making mass customization work. Harvard business review, 71(5), 108-11.
[2] Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert systems with applications, 39(11), 10059-10072.
[3] Carrer-Neto, W., Hernández-Alcaraz, M. L., Valencia-García, R., & García-Sánchez, F. (2012). Social knowledge-based recommender system. Application to the movies domain. Expert Systems with applications, 39(12), 10990-11000.
[4] Winoto, P., & Tang, T. Y. (2010). The role of user mood in movie recommendations. Expert Systems with Applications, 37(8), 6086-6092.
[5] Lee, S. K., Cho, Y. H., & Kim, S. H. (2010). Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Information Sciences, 180(11), 2142-2155.
[6] Nanopoulos, A., Rafailidis, D., Symeonidis, P., & Manolopoulos, Y. (2009). Musicbox: Personalized music recommendation based on cubic analysis of social tags. IEEE Transactions on Audio, Speech, and Language Processing, 18(2), 407-412.
[7] Tan, S., Bu, J., Chen, C., Xu, B., Wang, C., & He, X. (2011). Using rich social media information for music recommendation via hypergraph model. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 7(1), 1-22.
[8] Yu, Z., Zhou, X., Hao, Y., & Gu, J. (2006). TV program recommendation for multiple viewers based on user profile merging. User modeling and user-adapted interaction, 16, 63-82.
[9] Barragáns-Martínez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-López, M., Mikic-Fonte, F. A., & Peleteiro, A. (2010). A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Information Sciences, 180(22), 4290-4311.
[10] Núñez-Valdéz, E. R., Lovelle, J. M. C., Martínez, O. S., García-Díaz, V., De Pablos, P. O., & Marín, C. E. M. (2012). Implicit feedback techniques on recommender systems applied to electronic books. Computers in Human Behavior, 28(4), 1186-1193.
[11] Crespo, R. G., Martínez, O. S., Lovelle, J. M. C., García-Bustelo, B. C. P., Gayo, J. E. L., & De Pablos, P. O. (2011). Recommendation system based on user interaction data applied to intelligent electronic books. Computers in human behavior, 27(4), 1445-1449.
[12] Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J. A., Cerezo, A., & Romero, F. P. (2011). A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0. Information Sciences, 181(9), 1503-1516.
[13] Porcel, C., Moreno, J. M., & Herrera-Viedma, E. (2009). A multi-disciplinar recommender system to advice research resources in university digital libraries. Expert systems with applications, 36(10), 12520-12528.
[14] Porcel, C., & Herrera-Viedma, E. (2010). Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowledge-Based Systems, 23(1), 32-39.
[15] Porcel, C., Tejeda-Lorente, A., Martínez, M. A., & Herrera-Viedma, E. (2012). A hybrid recommender system for the selective dissemination of research resources in a technology transfer office. Information Sciences, 184(1), 1-19.
[16] J. Bobadilla, F. Serradilla及A. Hernando, 作者, 「Collaborative filtering adapted to recommender systems of e-learning」, Knowl.-Based Syst., 卷 22, 期 4, 頁 261–265, 5月 2009, doi: 10.1016/j.knosys.2009.01.008.
[17] O. R. Zaiane, 作者, 「Building a recommender agent for e-learning systems」, 收入 International Conference on Computers in Education, 2002. Proceedings., Auckland, New Zealand: IEEE Comput. Soc, 2002, 頁 55–59. doi: 10.1109/CIE.2002.1185862.
[18] Huang, Z., Zeng, D., & Chen, H. (2007). A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intelligent Systems, 22(5), 68-78.
[19] Castro-Schez, J. J., Miguel, R., Vallejo, D., & López-López, L. M. (2011). A highly adaptive recommender system based on fuzzy logic for B2C e-commerce portals. Expert Systems with Applications, 38(3), 2441-2454.
[20] Costa-Montenegro, E., Barragáns-Martínez, A. B., & Rey-López, M. (2012). Which App? A recommender system of applications in markets: Implementation of the service for monitoring users’ interaction. Expert systems with applications, 39(10), 9367-9375.
[21] McNally, K., O’Mahony, M. P., Coyle, M., Briggs, P., & Smyth, B. (2011). A case study of collaboration and reputation in social web search. ACM Transactions on Intelligent Systems and Technology (TIST), 3(1), 1-29.
[22] Vozalis, E., & Margaritis, K. G. (2003, September). Analysis of recommender systems algorithms. In The 6th Hellenic European Conference on Computer Mathematics & its Applications (pp. 732-745).
[23] Almahmood, R. J. K., & Tekerek, A. (2022). Issues and Solutions in Deep Learning-Enabled Recommendation Systems within the E-Commerce Field. Applied Sciences, 12(21), 11256.
[24] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
[25] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
[26] Longo, L., & Barrett, S. (2009). Toward Social Search: From Explicit to Implicit Collaboration to Predict Users' Interests.
[27] Wang, Y. X., & Zhang, Y. J. (2012). Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on knowledge and data engineering, 25(6), 1336-1353.
[28] Sawada, H., Ono, N., Kameoka, H., Kitamura, D., & Saruwatari, H. (2019). A review of blind source separation methods: two converging routes to ILRMA originating from ICA and NMF. APSIPA Transactions on Signal and Information Processing, 8, e12.
[29] Ozerov, A., & Févotte, C. (2009). Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE transactions on audio, speech, and language processing, 18(3), 550-563.
[30] Ren, B., Pueyo, L., Zhu, G. B., Debes, J., & Duchêne, G. (2018). Non-negative matrix factorization: robust extraction of extended structures. The Astrophysical Journal, 852(2), 104.
[31] Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). Algorithms and applications for approximate nonnegative matrix factorization. Computational statistics & data analysis, 52(1), 155-173.
[32] Buciu, J. (2008). Non-negative Matrix Factorization, A New Tool for Feature Extraction: Theory and Applications. International Journal of Computers, Communications & Control, 3(3).
[33] Chu, M., & Plemmons, R. (2005). Nonnegative matrix factorization and applications. Bulletin of the International Linear Algebra Society, 34(2-7), 26.
[34] Sra, S., & Dhillon, I. S. (2006). Nonnegative matrix approximation: Algorithms and applications. Computer Science Department, University of Texas at Austin.
[35] Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111-126.
[36] Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., & Jimenez, J. L. (2009). Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9(9), 2891-2918.
[37] de Fréin, R., Drakakis, K., Rickard, S., & Cichocki, A. (2008). Analysis of financial data using non-negative matrix factorization.
[38] Cichocki, A., Lee, H., Kim, Y. D., & Choi, S. (2008). Non-negative matrix factorization with α-divergence. Pattern Recognition Letters, 29(9), 1433-1440.
[39] Sandler, R., & Lindenbaum, M. (2011). Nonnegative matrix factorization with earth mover's distance metric for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1590-1602.
[40] Gupta, M. D., & Xiao, J. (2011, June). Non-negative matrix factorization as a feature selection tool for maximum margin classifiers. In CVPR 2011 (pp. 2841-2848). IEEE.
[41] Zafeiriou, S., Tefas, A., Buciu, I., & Pitas, I. (2006). Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Transactions on Neural Networks, 17(3), 683-695.
[42] Kotsia, I., Zafeiriou, S., & Pitas, I. (2007). A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems. IEEE Transactions on Information Forensics and Security, 2(3), 588-595.
[43] Wang, W. (2007, December). Squared Euclidean distance based convolutive non-negative matrix factorization with multiplicative learning rules for audio pattern separation. In 2007 IEEE International Symposium on Signal Processing and Information Technology (pp. 347-352). IEEE.
[44] Benetos, E., & Kotropoulos, C. (2010). Non-negative tensor factorization applied to music genre classification. IEEE Transactions on Audio, Speech, and Language Processing, 18(8), 1955-1967.
[45] Zdunek, R., & Cichocki, A. (2006, June). Non-negative matrix factorization with quasi-newton optimization. In International conference on artificial intelligence and soft computing (pp. 870-879). Berlin, Heidelberg: Springer Berlin Heidelberg.
[46] Van Benthem, M. H., & Keenan, M. R. (2004). Fast algorithm for the solution of large‐scale non‐negativity‐constrained least squares problems. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(10), 441-450.
[47] Kim, H., & Park, H. (2007). Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12), 1495-1502.
[48] Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., & Pascual-Marqui, R. D. (2006). Nonsmooth nonnegative matrix factorization (nsNMF). IEEE transactions on pattern analysis and machine intelligence, 28(3), 403-415.
[49] Mel, B. W. (1999). Think positive to find parts. Nature, 401(6755), 759-760.
[50] Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of machine learning research, 5(9).
[51] Feng, T., Li, S. Z., Shum, H. Y., & Zhang, H. (2002, June). Local non-negative matrix factorization as a visual representation. In Proceedings 2nd International Conference on Development and Learning. ICDL 2002 (pp. 178-183). IEEE.
[52] Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791.
[53] Huang, Z., Chung, W., & Chen, H. (2004). A graph model for E‐commerce recommender systems. Journal of the American Society for information science and technology, 55(3), 259-274.
[54] Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery, 5, 115-153
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code