論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2028-02-06
校外 Off-campus:開放下載的時間 available 2028-02-06
論文名稱 Title |
視覺化基因體變異與基因表現資料於海洋生物研究 Visualizing Genomic Variations and Gene Expression Profiles for Marine Biology Research |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
91 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-16 |
繳交日期 Date of Submission |
2025-02-06 |
關鍵字 Keywords |
全球暖化、海洋生物、族群基因組學、基因變異、基因組視覺化 global warming, marine organism, population genomics, genetic variation, genomic visualization |
||
統計 Statistics |
本論文已被瀏覽 37 次,被下載 0 次 The thesis/dissertation has been browsed 37 times, has been downloaded 0 times. |
中文摘要 |
全球暖化對地球的海洋帶來嚴重威脅,影響海洋生態系統,同時引起對生態 多樣性和可持續性的關切。為了更好地了解海洋生物如何應對這些變化,海洋生物 專家致力於深入研究不同海洋環境中基因變異的差異。現有的基因組學工具在基因 層面提供了細緻的視覺化,然而在族群基因組學的研究中,有著其他不一樣的需求, 例如能夠視覺化完整基因序列並精確突顯基因變異水平。為了滿足這些需求,我們 開發了 VariaVisio,一個基因組視覺化系統,旨在提高生物研究人員進行深入且準確 的族群基因組學研究的能力。VariaVisio 讓專家能夠視覺化完整的基因序列,還能夠 突顯基因變異的程度,並提供有關特定基因內變異位置的深入洞察。 |
Abstract |
Global warming poses a danger to the oceans of our planet affecting marine ecosystems and raising concerns about biodiversity and sustainability. Therefore, to better understand how marine organisms adapt to environmental changes, population genomics has emerged as a crucial research field, with biology experts focusing on the detailed study of genetic variations across diverse marine environments. Existing genomic systems offer detailed visualizations at the genetic level. However, population genomics research presents different needs, such as visualizing complete gene sequences and accurately highlighting levels of genetic variation. To meet these needs, we have developed VariaVisio, a genomic visualization system specifically designed to support population genomics research. VariaVisio enables biology researchers to visualize complete gene sequences, highlights the degree of genetic variation and providing in-depth insights into the locations of variations within specific genes. |
目次 Table of Contents |
論文審定書 ..................................................................................................................... i 致謝 .................................................................................................................... ii 摘要 ................................................................................................................... iii Abstract ................................................................................................................... iv Table of Contents .............................................................................................................. v List of Figures ................................................................................................................. vii List of Table ................................................................................................................... xi CHAPTER 1 Introduction .......................................................................................... 1 1.1 Background ......................................................................................................... 1 1.2 Terminology ....................................................................................................... 3 1.3 Research Questions ............................................................................................. 6 CHAPTER 2 Literature Review ................................................................................. 7 2.1 Synteny Visualization ......................................................................................... 7 2.2 Variation Visualization ....................................................................................... 9 2.3 Gene Expression Visualization ......................................................................... 12 CHAPTER 3 System Design ..................................................................................... 15 3.1 User Requirements ........................................................................................... 15 3.2 VariaVisio ......................................................................................................... 19 3.2.1 Compression and Variation .......................................................................... 21 3.2.2 Gene Expression ........................................................................................... 29 3.3 Usage Scenario ................................................................................................. 32 CHAPTER 4 Evaluation ............................................................................................ 35 4.1 Study 1: User Study .......................................................................................... 35 4.1.1 Participants ................................................................................................... 35 4.1.2 Data ............................................................................................................... 35 4.1.3 Tasks ............................................................................................................. 36 4.1.4 Outcome Measures ....................................................................................... 38 4.1.5 Study Procedure ............................................................................................ 40 4.1.6 Results .......................................................................................................... 41 4.2 Study 2: Expert Analysis .................................................................................. 46 4.2.1 Participants ................................................................................................... 46 4.2.2 Data ............................................................................................................... 47 4.2.3 Outcome Measures ....................................................................................... 48 4.2.4 Study Procedure ............................................................................................ 49 4.2.5 Results .......................................................................................................... 51 CHAPTER 5 Discussion and Conclusion ................................................................. 61 References .................................................................................................................. 63 Appendix A: User Study Questions .............................................................................. 73 Appendix B: Expert Analysis Questions ...................................................................... 79 |
參考文獻 References |
A reference standard for genome biology. (2018). Nature Biotechnology, 36(12), 1121–1121. https://doi.org/10.1038/nbt.4318 Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the System Usability Scale. International Journal of Human-Computer Interaction, 24(6), 574–594. https://doi.org/10.1080/10447310802205776 Bartolomeo, S. Di, Zhang, Y., Sheng, F., & Dunne, C. (2021). Sequence Braiding: Visual Overviews of Temporal Event Sequences and Attributes. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1353–1363. https://doi.org/10.1109/TVCG.2020.3030442 Belkin, I. M. (2009). Rapid warming of Large Marine Ecosystems. Progress in Oceanography, 81(1–4), 207–213. https://doi.org/10.1016/j.pocean.2009.04.011 Bernatchez, L. (2016). On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. Journal of Fish Biology, 89(6), 2519–2556. https://doi.org/10.1111/jfb.13145 Bohyoung Kim, Bongshin Lee, Knoblach, S., Hoffman, E., & Jinwook Seo. (2009). GeneShelf: A Web-based Visual Interface for Large Gene Expression Time-Series Data Repositories. IEEE Transactions on Visualization and Computer Graphics, 15(6), 905– 912. https://doi.org/10.1109/TVCG.2009.146 Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2301–2309. https://doi.org/10.1109/TVCG.2011.185 Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4–7. Chen, Y., Puri, A., Yuan, L., & Qu, H. (2018). StageMap: Extracting and Summarizing Progression Stages in Event Sequences. 2018 IEEE International Conference on Big Data (Big Data), 975–981. https://doi.org/10.1109/BigData.2018.8622571 Clamp, M., Fry, B., Kamal, M., Xie, X., Cuff, J., Lin, M. F., Kellis, M., Lindblad-Toh, K., & Lander, E. S. (2007). Distinguishing protein-coding and noncoding genes in the human genome. Proceedings of the National Academy of Sciences, 104(49), 19428– 19433. https://doi.org/10.1073/pnas.0709013104 Cui, J., Yang, Y., Luo, S., Wang, L., Huang, R., Wen, Q., Han, X., Miao, N., Cheng, J., Liu, Z., Zhang, C., Feng, C., Zhu, H., Su, J., Wan, X., Hu, F., Niu, Y., Zheng, X., Yang, Y., … Hu, K. (2020). Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd (Momordica spp.). Horticulture Research, 7(1), 85. https://doi.org/10.1038/s41438-020-0305-5 Diesh, C., Stevens, G. J., Xie, P., De Jesus Martinez, T., Hershberg, E. A., Leung, A., Guo, E., Dider, S., Zhang, J., Bridge, C., Hogue, G., Duncan, A., Morgan, M., Flores, T., Bimber, B. N., Haw, R., Cain, S., Buels, R. M., Stein, L. D., & Holmes, I. H. (2023). JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biology, 24(1), 74. https://doi.org/10.1186/s13059-023-02914-z Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685–688. https://doi.org/10.1038/s41587-020- 0548-6 Du, F., Shneiderman, B., Plaisant, C., Malik, S., & Perer, A. (2017). Coping with Volume and Variety in Temporal Event Sequences: Strategies for Sharpening Analytic Focus. IEEE Transactions on Visualization and Computer Graphics, 23(6), 1636–1649. https://doi.org/10.1109/TVCG.2016.2539960 Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A. S., Zink, F., Zhu, J., Carlson, S., Helgason, A., Walters, G. B., Gunnarsdottir, S., Mouy, M., Steinthorsdottir, V., Eiriksdottir, G. H., Bjornsdottir, G., Reynisdottir, I., Gudbjartsson, D., Helgadottir, A., Jonasdottir, A., Jonasdottir, A., … Stefansson, K. (2008). Genetics of gene expression and its effect on disease. Nature, 452(7186), 423–428. https://doi.org/10.1038/nature06758 Estaki, M., Jiang, L., Bokulich, N. A., McDonald, D., González, A., Kosciolek, T., Martino, C., Zhu, Q., Birmingham, A., Vázquez‐Baeza, Y., Dillon, M. R., Bolyen, E., Caporaso, J. G., & Knight, R. (2020). QIIME 2 Enables Comprehensive End‐to‐End Analysis of Diverse Microbiome Data and Comparative Studies with Publicly Available Data. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.100 Ferstay, J. A., Nielsen, C. B., & Munzner, T. (2013). Variant View: Visualizing Sequence Variants in their Gene Context. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2546–2555. https://doi.org/10.1109/TVCG.2013.214 Gaitatzes, A., Johnson, S. H., Smadbeck, J. B., & Vasmatzis, G. (2018). Genome U-Plot: a whole genome visualization. Bioinformatics, 34(10), 1629–1634. https://doi.org/10.1093/bioinformatics/btx829 Guo, S., Jin, Z., Chen, Q., Gotz, D., Zha, H., & Cao, N. (2022). Interpretable Anomaly Detection in Event Sequences via Sequence Matching and Visual Comparison. IEEE Transactions on Visualization and Computer Graphics, 28(12), 4531–4545. https://doi.org/10.1109/TVCG.2021.3093585 Guo, Y., Guo, S., Jin, Z., Kaul, S., Gotz, D., & Cao, N. (2022). Survey on Visual Analysis of Event Sequence Data. IEEE Transactions on Visualization and Computer Graphics, 28(12), 5091–5112. https://doi.org/10.1109/TVCG.2021.3100413 Hadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., & Harris, S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34(2), 292–293. https://doi.org/10.1093/bioinformatics/btx610 Hohenlohe, P. A., Funk, W. C., & Rajora, O. P. (2021a). Population genomics for wildlife conservation and management. Molecular Ecology, 30(1), 62–82. https://doi.org/10.1111/mec.15720 Hohenlohe, P. A., Funk, W. C., & Rajora, O. P. (2021b). Population genomics for wildlife conservation and management. Molecular Ecology, 30(1), 62–82. https://doi.org/10.1111/mec.15720 James Petersen, Robert E. Gabler, & Dorothy Sack. (2014). Introduction to the Oceans. In Fundamentals of Physical Geography (2nd Editio). Cengage Learning. John Houghton. (2015). Global Warming. Reports on Progress in Physics, 68(6). Jorde, L. B. (2001). Population genomics: a bridge from evolutionary history to genetic medicine. Human Molecular Genetics, 10(20), 2199–2207. https://doi.org/10.1093/hmg/10.20.2199 Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, and D. (2002). The Human Genome Browser at UCSC. Genome Research, 12(6), 996–1006. https://doi.org/10.1101/gr.229102 Krzywinski, M., Schein, J., Birol, İ., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. https://doi.org/10.1101/gr.092759.109 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43(W1), W580–W584. https://doi.org/10.1093/nar/gkv279 Liu, D., Hunt, M., & Tsai, I. J. (2018). Inferring synteny between genome assemblies: a systematic evaluation. BMC Bioinformatics, 19(1), 26. https://doi.org/10.1186/s12859- 018-2026-4 Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., Foster, B., Moser, M., Karasik, E., Gillard, B., Ramsey, K., Sullivan, S., Bridge, J., Magazine, H., Syron, J., … Moore, H. F. (2013). The Genotype- Tissue Expression (GTEx) project. Nature Genetics, 45(6), 580–585. https://doi.org/10.1038/ng.2653 Lou, R. N., Jacobs, A., Wilder, A. P., & Therkildsen, N. O. (2021). A beginner’s guide to low‐coverage whole genome sequencing for population genomics. Molecular Ecology, 30(23), 5966–5993. https://doi.org/10.1111/mec.16077 Marcus, J. H., & Novembre, J. (2017). Visualizing the geography of genetic variants. Bioinformatics, 33(4), 594–595. https://doi.org/10.1093/bioinformatics/btw643 Markert, J. A., Champlin, D. M., Gutjahr-Gobell, R., Grear, J. S., Kuhn, A., McGreevy, T. J., Roth, A., Bagley, M. J., & Nacci, D. E. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(1), 205. https://doi.org/10.1186/1471-2148-10-205 Morgan, T. H. (1917). The Theory of the Gene. The American Naturalist, 51(609), 513–544. https://doi.org/10.1086/279629 Munsky, B., Neuert, G., & van Oudenaarden, A. (2012). Using Gene Expression Noise to Understand Gene Regulation. Science, 336(6078), 183–187. https://doi.org/10.1126/science.1216379 Nattestad, M., Aboukhalil, R., Chin, C.-S., & Schatz, M. C. (2021). Ribbon: intuitive visualization for complex genomic variation. Bioinformatics, 37(3), 413–415. https://doi.org/10.1093/bioinformatics/btaa680 Nedoluzhko, A. (2023). Sea of opportunities: marine genomics in an era of global environmental change. BMC Genomics, 24(1), 286. https://doi.org/10.1186/s12864- 023-09392-4 Nevo, E. (1978). Genetic variation in natural populations: Patterns and theory. Theoretical Population Biology, 13(1), 121–177. https://doi.org/10.1016/0040-5809(78)90039-4 Nielsen, E. E., Hemmer‐Hansen, J., Larsen, P. F., & Bekkevold, D. (2009). Population genomics of marine fishes: identifying adaptive variation in space and time. Molecular Ecology, 18(15), 3128–3150. https://doi.org/10.1111/j.1365-294X.2009.04272.x Nusrat, S., Harbig, T., & Gehlenborg, N. (2019). Tasks, Techniques, and Tools for Genomic Data Visualization. Computer Graphics Forum, 38(3), 781–805. https://doi.org/10.1111/cgf.13727 Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12(1), 385. https://doi.org/10.1186/1471-2105-12-385 Paganin, M., Tebaldi, T., Lauria, F., & Viero, G. (2023). Visualizing gene expression changes in time, space, and single cells with expressyouRcell. IScience, 26(6), 106853. https://doi.org/10.1016/j.isci.2023.106853 Poonperm, R., Takata, H., Hamano, T., Matsuda, A., Uchiyama, S., Hiraoka, Y., & Fukui, K. (2015). Chromosome Scaffold is a Double-Stranded Assembly of Scaffold Proteins. Scientific Reports, 5(1), 11916. https://doi.org/10.1038/srep11916 Preston, M. D., Assefa, S. A., Ocholla, H., Sutherland, C. J., Borrmann, S., Nzila, A., Michon, P., Hien, T. T., Bousema, T., Drakeley, C. J., Zongo, I., Ouédraogo, J.-B., Djimde, A. A., Doumbo, O. K., Nosten, F., Fairhurst, R. M., Conway, D. J., Roper, C., & Clark, T. G. (2014). PlasmoView: A Web-based Resource to Visualise Global Plasmodium falciparum Genomic Variation. The Journal of Infectious Diseases, 209(11), 1808–1815. https://doi.org/10.1093/infdis/jit812 Reid, P. C., Fischer, A. C., Lewis-Brown, E., Meredith, M. P., Sparrow, M., Andersson, A. J., Antia, A., Bates, N. R., Bathmann, U., Beaugrand, G., Brix, H., Dye, S., Edwards, M., Furevik, T., Gangstø, R., Hátún, H., Hopcroft, R. R., Kendall, M., Kasten, S., … Washington, R. (2009). Chapter 1 Impacts of the Oceans on Climate Change (pp. 1– 150). https://doi.org/10.1016/S0065-2881(09)56001-4 Schubert, I. (2007). Chromosome evolution. Current Opinion in Plant Biology, 10(2), 109– 115. https://doi.org/10.1016/j.pbi.2007.01.001 Sherry, S. T. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308 Shin, J., Jeon, J., Jung, D., Kim, K., Kim, Y. J., Jeong, D.-H., & Yoon, J. (2022). PhenGenVar: A User-Friendly Genetic Variant Detection and Visualization Tool for Precision Medicine. Journal of Personalized Medicine, 12(6), 959. https://doi.org/10.3390/jpm12060959 Sinha, A. U., & Meller, J. (2007). Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinformatics, 8(1), 82. https://doi.org/10.1186/1471-2105-8-82 Tamagawa, K., Yoshida, K., Ohrui, S., & Takahashi, Y. (2022). Population transcriptomics reveals the effect of gene flow on the evolution of range limits. Scientific Reports, 12(1), 1318. https://doi.org/10.1038/s41598-022-05248-1 Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178–192. https://doi.org/10.1093/bib/bbs017 Tichkule, S., Myung, Y., Naung, M. T., Ansell, B. R. E., Guy, A. J., Srivastava, N., Mehra, S., Cacciò, S. M., Mueller, I., Barry, A. E., van Oosterhout, C., Pope, B., Ascher, D. B., & Jex, A. R. (2022). VIVID: A Web Application for Variant Interpretation and Visualization in Multi-dimensional Analyses. Molecular Biology and Evolution, 39(9). https://doi.org/10.1093/molbev/msac196 Townsend, J. P. (2003). Population Genetic Variation in Genome-Wide Gene Expression. Molecular Biology and Evolution, 20(6), 955–963. https://doi.org/10.1093/molbev/msg106 UniProt: a hub for protein information. (2015). Nucleic Acids Research, 43(D1), D204–D212. https://doi.org/10.1093/nar/gku989 Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., … Zhu, X. (2001). The Sequence of the Human Genome. Science, 291(5507), 1304–1351. https://doi.org/10.1126/science.1058040 Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T. -h., Jin, H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49–e49. https://doi.org/10.1093/nar/gkr1293 Weigel, D., & Nordborg, M. (2015). Population Genomics for Understanding Adaptation in Wild Plant Species. Annual Review of Genetics, 49(1), 315–338. https://doi.org/10.1146/annurev-genet-120213-092110 Yu, B., Doraiswamy, H., Chen, X., Miraldi, E., Arrieta-Ortiz, M. L., Hafemeister, C., Madar, A., Bonneau, R., & Silva, C. T. (2014). Genotet: An Interactive Web-based Visual Exploration Framework to Support Validation of Gene Regulatory Networks. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1903–1912. https://doi.org/10.1109/TVCG.2014.2346753 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2028-02-06 校外 Off-campus:開放下載的時間 available 2028-02-06 您的 IP(校外) 位址是 3.141.6.24 現在時間是 2025-05-10 論文校外開放下載的時間是 2028-02-06 Your IP address is 3.141.6.24 The current date is 2025-05-10 This thesis will be available to you on 2028-02-06. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-02-06 |
QR Code |