論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
應用於射頻晶片-封裝共模擬之覆晶及鎊線晶片尺寸封裝模型化研究 Modeling of Flip-Chip and Wire-Bond Chip Scale Packages for RF Chip-Package Co-Simulations |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
112 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2008-12-25 |
繳交日期 Date of Submission |
2009-01-09 |
關鍵字 Keywords |
晶片-封裝-基板共設計、鎊線封裝、覆晶封裝、封裝效應與模型 Chip-package-board co-design, wire-bond packages, Flip-chip packages, Package effects and models |
||
統計 Statistics |
本論文已被瀏覽 5847 次,被下載 0 次 The thesis/dissertation has been browsed 5847 times, has been downloaded 0 times. |
中文摘要 |
本研究目的是探討封裝效應對於無線通訊系統射頻晶片特性所造成之影響。本論文致力於發展一套有系統的分析方法,用以審慎評估覆晶與鎊線封裝之寄生效應,並嚴謹探討在一個無線區域網路射頻接收機晶片中,封裝效應對於前端低雜訊放大器將可能造成之影響。此外論文中也將延伸探討晶片-封裝-基板共設計之概念與方法。論文首先從物理結構開始,探討覆晶與鎊線兩種射頻封裝技術之特性差異,並分別發展對應之寬頻等校模型,以了解兩種不同封裝技術之寄生效應。論文中亦設計一系列之測試晶片,用以萃取封裝寄生效應之等校模型元件值,利用所設計之測試晶片與模型化理論,即可針對不同之封裝技術分別建立完整之等校電路模型。此外本研究也深入分析覆晶封裝結構對於晶片螺旋電感器所產生之相互影響,藉由獨立封裝之測試晶片,發展具有封裝考量之螺旋電感器修正模型。由實驗結果可驗證本論文所發展之封裝模型頻寬可達20GHz,模型化與實測之結果非常吻合。論文第二部分則利用所建立之封裝等校電路模型,定性地探討封裝效應對於無線區域網路射頻接收機前端低雜放大器所造成之影響。利用線性與非線性分析方法,可準確找出低雜訊放大器電路參數與封裝寄生元件之相依性,並配合指標因子加以評估覆晶與鎊線封裝效應對電路所產生不同性質之影響。論文中也同時發展晶片-封裝共模擬之技巧,能進一步預測封裝後低雜訊放大器之寬頻響應。論文第三部份則延伸探討封裝與基板對於第三代行動通訊系統發射機升頻器所造成之影響,並研究晶片-封裝-基板共設計之方法。電路設計上先利用非線性分析方法評估寄生效應之影響,進而利用電磁模擬軟體分析封裝與基板之寄生效應,並適當設計接地寄生電感值。經由實驗結果可發現,適當的設計接地路徑之寄生電感值,將可有效地減輕封裝與基板寄生效應對升頻器模組之影響,並減少電路特性之惡化,進而達到最佳化設計之目標。 |
Abstract |
This dissertation aims to evaluate the package effects on the performance of radio frequency integrated circuits (RFICs) for wireless applications. A model-based study is presented to compare the effects between flip-chip and wire-bond packages on a front-end cascode low-noise amplifier (LNA) in a 2.45 GHz CMOS wireless local area network (WLAN) receiver. To construct the package electrical models, specific modeling dies are designed to help extract the equivalent-circuit elements from measured S-parameters for chip-package interconnects. Furthermore, the ground-proximity effect on on-chip spiral inductors in a flip-chip package is first observed and presented in this modeling study. Excellent agreement between modeling and measurement is obtained by up to 20 GHz for a 64-pin flip-chip ball grid array (FC-BGA) package and a 64-pin wire-bond quad flat nonlead (WB-QFN) package. For practical applications, the established package models are used to predict the degradation of the figure of merit for the cascode LNA under packaged condition. Chip-package co-simulations can achieve good agreement with measurements, and thus can persuasively account for the complete effects caused by the two different packages on the cascode LNA. To simultaneously consider the package and board interconnect effects on RFICs, this dissertation also designs and implements a 1.95 GHz upconverter for the wideband code-division multiple-access (W-CDMA) transmitter. Specific ground wire-bonding and board connection are designed to minimize the linearity degradation due to package and board interconnects. Nonlinear analysis technique is also used to evaluate the nonlinear distortion of the upconverter in the chip-package-board co-design phase. The final measurement results have successfully verified the co-design predictions and simulations for this upconverter. |
目次 Table of Contents |
1 Introduction 1 1.1 Research Motivation 1 1.2 Package Effects on RFICs 3 1.2.1 Wire-Bond Package Effects 5 1.2.2 Flip-Chip Package Effects 8 1.3 Chip-Package-Board Co-Design 10 1.4 Overview of Dissertation 13 2 Extraction of RF Package Models 15 2.1 FC-BGA versus WB-QFN 15 2.2 FC-BGA Package Model 18 2.3 WB-QFN Package Model 28 3 Flip-Chip and Wire-Bond Package Effects on a Receiver Low-Noise Amplifier 32 3.1 Low-Noise Amplifier Design 32 3.2 Analysis of RF Specification Parameters 34 3.2.1 Small-Signal Gain 35 3.2.2 Noise Figure 40 3.2.3 Third-Order Intercept Point 44 3.3 Co-Simulation and Measurement Results 48 4 Package and Board Effects on a Transmitter Upconverter 54 4.1 Upconverter Design 55 4.2 Analysis of Linearity Parameters 56 4.2.1 Conversion Gain 57 4.2.2 Third-Order Intercept Point 61 4.2.3 Adjacent Channel Power Ratio 65 4.2.4 Ground Inductance Effects 66 4.3 Co-Simulation and Measurement Results 69 5 Conclusions 77 Bibliography 79 Appendix 89 A Derivation of Nonlinear Current Sources in the Volterra Series Analysis 89 Vita 95 |
參考文獻 References |
[1] M. A. Margarit, D. Shih, P. J. Sullivan, and F. Ortega, “A 5-GHz BiCMOS RFIC front-end for IEEE 802.11a/HiperLAN wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1284-1287, July 2003. [2] Z. Li, R. Quintal, and K. K. O, “A dual-band CMOS front-end with two gain modes for wireless LAN applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 2069-2073, Nov. 2004. [3] S. Sarkar, P. Sen, A. Raghavan, S. Chakarborty, and J. Laskar, “Development of 2.4 GHz RF transceiver front-end chipset in 0.25μm CMOS,” in Proc. 16th Int. VLSI Design Conf., Jan. 2003, pp. 42-47. [4] K. Vavelidis, I. Vassiliou, T. Georgantas, A. Yamanaka, S. Kavadias, G. Kamoulakos, C. Kapnistis, Y. Kokolakis, A. Kyranas,P. Merakos, I. Bouras, S. Bouras, S. Plevridis, and N. Haralabidis, “A dual-band 5.15-5.35-GHz, 2.4-2.5-GHz 0.18-spl mum CMOS transceiver for 802.11abg wireless LAN,” IEEE J. Solid-State Circuits, vol. 39, pp. 1180-1184, July 2004. [5] B. Come, D. Hauspie, G. Albasini, S. Brebels, W. De Raedt, W. Diels, W. Eberle, H. Mind, J. Ryckaert, J. Tubbax, and S. Donnay, “Single-package direct-conversion receiver for 802.1 1 a Wireless LAN enhanced with fast converging digital compensation techniques,” in 2004 IEEE MTT-S Int. Microwave Symp. Dig., pp. 555-558. [6] S. Khorram et al., “A fully integrated SOC for 802.11b in 0.18-spl mum CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 2492-2501, Dec. 2005. [7] P. M. Stroet et al., “A zero-IF single-chip transceiver for up to 22 Mb/s QPSK 802.11b wireless LAN,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 2001, pp. 204–205. [8] W. Kluge et al., “A 2.4GHz CMOS transceiver for 802.11b wireless LANs,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 2003, pp. 360–361. [9] B. Razavi, “A 2.4-GHz CMOS receiver for IEEE 802.11 wireless LAN’s,” IEEE J. Solid-State Circuits, vol. 34, pp. 1382–1385, Oct. 1999. [10] M. Zargari, D. K. Su, C. P. Yue, S. Rabii, D. Weber, B. J. Kaczynski, S. S. Mehta, K. Singh, S. Mendis, and B. A. Wooley, “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, pp. 1688–1694, Dec. 2002. [11] M. Zargari, D. K. Su, C. P. Yue, S. Rabii, D. Weber, B. J. Kaczynski, S. S. Mehta, K. Singh, S. Mendis and B. A. Wooley, “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, pp. 1688-1694, Dec. 2002. [12] J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” IEEE J. Solid-State Circuits, vol. 36, pp. 1198-1204, Aug. 2001. [13] T. H. Lee, H. Samavati and H. R. Rategh, “5-GHz CMOS wireless LANs,” IEEE Trans. Microwave Theory and Tech., vol. 50, pp. 268-280, Jan. 2002. [14] C. Chien, Digital Radio Systems on A Chip: A Systems Approach, Norwell, MA: Kluwer Academic Publishers, 2001. [15] J. Roger and C. Plett, Radio Frequency Integrated Circuits Design, Boston, MA: Artech House Inc., 2003. [16] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399–1410, Dec. 1995. [17] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, pp. 428-435, June 1997. [18] B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits and Devices Magazine, pp. 12-25, Sep. 1996. [19] Q. Gu, RF System Design of Transceivers for Wireless Communications, New York, NY: Springer Science+Business Media LLC, 2005. [20] L.E. Larson, “Integrated circuit technology options for RFIC’s – present status and future directions,” IEEE J. Solid-State Circuits, pp. 387-399, March 1998. [21] R. R. Tummala, Fundamental of Microsystems Packaging, Boston, MA: McGraw-Hill Inc., 2001. [22] A. C. Imhoff, “Packaging technologies for RFIC’s: current status and future trends,” in IEEE Radio-Freq. Integr. Circuits Symp. Dig., 1999, pp. 7–10. [23] M. A. Bolanos, “Semiconductor integrated circuit packaging technology challenges - next five years,” in Int. Electron. Material Packag. Symp. Dig., Dec. 2005, pp. 6–9. [24] L. Larson and D. Jessie, “Advances in RF packaging technologies for next-generation wireless communications applications,” in Proc. Custom Integrated Circuits Conf., 2003, pp. 323–330. [25] H. Lavoie, M.-C. Paquet, J. Sylvestre, S. Ouimet, E. Duchesne, S. Barbeau, M. Gauvin, V. Oberson, “From leaded to lead free assembly and new packaging technology challenges,” in Proc. 57th Electron. Comp. Technol. Conf., 2007, pp. 1333–1339. [26] W. Chen, The technology road-map of the advanced package in Taiwan, Available: http:// www.eiak.org/electronic_info/data/Technology.pdf [27] G. Mandall, G. Mishral, W.D. van Driell, and G.Q.Zhang, “The effects of packaging on RFICs,” in Proc. Int. Electron. Packag. Technol. Conf., Aug. 2006, pp. 1-7. [28] P. C. Cherry and M. F. Iskander, “High-frequency electronic package and interconnection effects,” in IEEE Int. AP-S. Symp. Dig., June 1994, pp. 1706-1709. [29] M. P.Gaynor, System-in-Package: RF Design and Applications, Boston, MA: Artech House Inc., 2007. [30] E. J. Vardaman, K. Carpenter, and L. Matthew, System-in-Package: The New Wave in 3D packaging, Austin, TX: TechSearch International Inc., 2005. [31] J.H. Lau and S.W.R Lee, Chip Scale Packaging: Design, Materials, Process, Reliability, and Applications, New York, NY: McGraw-Hill Inc., 1999. [32] D. Jessie and L. Larson, “Design techniques for improved microwave performance of small outline packages,” in IEEE Radio-Freq. Integr. Circuits Symp. Dig., 2002, pp. 381–384. [33] T.S. Horng, S.M. Wu, C.T. Chiu, and C.P. Hung, “Electrical performance improvements on RFICs using bump chip carrier packages as compared to standard thin shrink small outline packages,” IEEE Trans. Adv. Packag., vol. 24, pp. 548-554, Nov. 2001. [34] N. Chen, K. Chiang, T.D. Her, Y.-L. Lai, and C. Chen, “Electrical characterization of quad flat non-lead package for RFIC applications,” in Int. Semiconductor Device Research Symposium Dig., 2001, pp. 266-269. [35] T.S. Horng, S.M. Wu, H.H. Huang, C.T. Chiu, and C.P. Hung, “Modeling of lead-frame plastic CSPs for accurate prediction of their low-pass filter effects on RFICs,” IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 1538-1545, Sep. 2001. [36] P. Sivonen and A. Parssinen, “Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection,” IEEE Trans. Microwave Theory and Tech., vol. 53, pp. 1304-1313, Apr. 2005. [37] P. Sivonen, S. Kangasmaa, and A. Parssinen, “Analysis of packaging effects and optimization in inductively degenerated common-emitter low-noise amplifiers,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp. 1220-1226, Apr. 2003. [38] T.S. Horng, S.M. Wu, C.T. Chiu, and C.P. Hung, “Electrical performance improvements on RFICs using bump chip carrier packages as compared to standard thin shrink small outline packages,” IEEE Trans. Adv. Packag., vol. 24, pp. 548-554, Nov. 2001. [39] F.Y. Han, J.M. Wu, T.S. Horng, and C.C. Tu, “A rigorous study of package and PCB effects on W-CDMA upconverter RFICs,” IEEE Trans. Microwave Theory and Tech., vol. 54, pp. 3793-3804, Oct. 2006. [40] J.M. Wu, F.Y. Han, T.S. Horng, and J. Lin, “Direct-conversion quadrature modulator MMIC design with a new 90 degrees phase shifter including package and PCB effects for W-CDMA applications,” IEEE Trans. Microwave Theory and Tech., vol. 54, pp. 2691-2698, Jun. 2006. [41] R. Senthinathan and J.L. Prince, “Simultaneous switching ground noise calculation for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol. 26, pp. 1724-1726, Nov. 1991. [42] A.R. Djordjevic and T.K. Sarkar, “An investigation of delta-I noise on integrated circuits,” IEEE Trans. Electromag. Compat., vol. 35, pp. 134-147, May 1993. [43] S.V. den Berghe, F. Olyslager, D. de Zutter, J.D. Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromag. Compat., vol. 40, pp. 111-119, May 1998. [44] Y. Eo, W. R. Eisenstadt, W. Jin, J. Choi, and J. Shim, “A compact multilayer IC package model for efficient simulation, analysis, and design of high-performance VLSI circuits,” IEEE Trans. Adv. Packag., vol. 26, pp. 392-401, Nov. 2003. [45] E. McGibney and J. Barrett, “An overview of electrical characterization techniques and theory for IC packages and interconnects,” IEEE Trans. Adv. Packag., vol. 29, pp. 131-139, Feb. 2006. [46] F. Ndagijimana, J. Engdahl, A. Ahmadouche, and J. Chilo, “Frequency limitation on an assembled SOP8 package,” in Proc. 43th Electron. Comp. Technol. Conf., 1993, pp. 530–535. [47] T. Y. Chou and Z. J. Cendes, “Capacitance calculation of IC packages using the finite element method and planes of symmetry,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, pp. 1159–1166, Sept. 1994. [48] A. C. Cangellaris, J. L. Prince, and L. P. Vakanas, “Frequency-dependent inductance and resistance calculation for three-dimensional structures in high-speed interconnect systems,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 13, pp. 154–159, Mar. 1990. [49] R. W. Jackson, “A circuit topology for microwave modeling of plastic surface mount packages,” IEEE Trans. Microwave Theory and Tech., vol. 44, pp. 1140–1146, July 1996. [50] R. W. Jackson and S. Rakshit, “Microwave-circuit modeling of high lead-count plastic packages,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 1926–1933, Oct. 1997. [51] Y. Chen, P. Harms, R. Mittra, andW. T. Beyene, “An FDTD-Touchstone hybrid technique for equivalent circuit modeling of SOP electronic packages,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 1911–1918, Oct. 1997. [52] C.-N. Kuo, B. Houshmand, and T. Itoh, “Full-wave analysis of packaged microwave circuits with active and nonlinear devices: an FDTD approach,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 819–826, May. 1997. [53] M. Righi, G. Tardioli, L. Cascio, and W. J. R. Hoefer, “Time-domain characterization of packaging effects via segmentation technique,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 1905-1910, Oct. 1997. [54] F. Mernyei, “Measurement and field simulation based characterization of plastic packages,” in Proc. IEEE 6th Topical Elect. Performance Electron. Packag. Meeting, 1997, pp. 181–184. [55] C. Chun, A.-V. Pham, J. Laskar, and B. Hutchison, “Development of microwave package models utilizing on-wafer characterization techniques,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 1948-1954, Oct. 1997. [56] T. S. Horng, S. M.Wu, and C. Shih, “Electrical modeling of RFIC packages up to 12 GHz,” in Proc. 49th Electron. Comp. Technol. Conf., 1999, pp. 867–712 [57] T. Liang, J. A. Pl′a, P. H. Aaen, and M. Mahalingam, “Equivalent-circuit modeling and verification of metal-ceramic packages for RF and microwave power transistors,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 709–714, June. 1999. [58] R. Sturdivant, C. Quan, and J. Wooldridge, “Investigation of MMIC flip chips with sealants for improved reliability without hermeticity,” in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp. 239-242. [59] E. J. Vardaman and T. Goodman, “Flip chip market trends and infrastructure limitations,” in Int. Electron. Manufact. Symp. Dig., 1997, pp. 37-40. [60] K. Boustedt, “GHz flip-chip—An overview,” in Proc. 48th Electron. Comp. Technol. Conf., 1998, pp. 1280–1285. [61] A. Chandrasekhar, E. Beyne, W. De Raedt, and B. Nauwelaers, “Distributed circuit models for near-CSP interconnects,” in Proc. IEEE 11th Topical Elect. Performance Electron. Packag. Meeting, 2002, pp. 63-66. [62] H. H. M. Ghouz and E. EL-Sharawy, “An accurate equivalent circuit model of flip chip and via interconnects,” IEEE Trans. Microwave Theory and Tech., vol. 44, pp. 2543-2554, Dec. 1996. [63] J. Ryoo, J. Choo, I. H. Park, J. Hong, and J. Lee, “Full wave simulation of flip-chip packaging effects on RFID transponder,” in Proc. IEEE Int. RFID Conf., 2007, pp. 37-40. [64] D. Staiculescu, H. Liang, J. Laskar, and J. Mather, “Full wave analysis and development of circuit models for flip chip interconnects,” in Proc. 7th IEEE Topical Elect. Performance Electron. Packag. Meeting, 1998, pp. 241–244. [65] W. Heinrich, A. Jentzsch, and G. Baumann, “Millimeter-wave characteristics of flip-chip interconnects for multichip modules,” IEEE Trans. Microwave Theory and Tech., vol. 46, no. 12, pp. 2264–2268, Dec. 1998. [66] D. Staiculescu, A. Sutono, and J. Laskar, “Wideband scalable electrical model for microwave millimeter wave flip chip interconnects,” IEEE Trans. Adv. Packag., vol. 24, pp. 255-259, Aug. 2001. [67] A. Jentzsch and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 12, pp. 871–878, May 2001. [68] R. J. Pratap, D. Staiculescu, S. Pinel, J Laskar, and G. S. May, “Modeling and sensitivity analysis of circuit parameters for flip-chip interconnects using neural networks,” IEEE Trans. Adv. Packag., vol. 28, pp. 71-78, Feb. 2005. [69] C. S. Patel, P. S. Andry, K. A. Jenkins, B. Dang, R. Horton, R. J. Polastre, and C. K. Tsang, “Characterization of flip chip microjoins up to 40 GHz using silicon carrier,” in Proc. Int. Interconnect Tech. Conf., June 2005, pp. 129-131. [70] U. Preiffer and B. Welch, “Equivalent circuit model extraction of flip-chip ball interconnects based on direct probing techniques,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 594-596, Sept. 2005. [71] U. Preiffer and A. Chandrasekhar, ”Characterization of flip-chip interconnects up to millimeter-wave frequencies based on a nondestructive in situ approach,” IEEE Trans. Adv. Packag., vol. 28, pp. 160-167, May 2005. [72] S. K. Lohokare, Z. Lu, C. A. Schuetz, and D. W. Prather, “Electrical characterization of flip-chip interconnects formed using a novel conductive-adhesive-based process,” IEEE Trans. Adv. Packag., vol. 29, pp. 542-547, Aug. 2006. [73] C.-L. Wang, and R.-B. Wu, “Modeling and design for electrical performance of wideband flip-chip transition,” IEEE Trans. Adv. Packag., vol. 26, pp. 385-391, Nov. 2003. [74] N. Iwasaki, F. Ishitsuka, and K. Kato, “High performance flip-chip technique for wide-band modules,” in Proc. IEEE 5th Topical Elect. Performance Electron. Packag. Meeting, 1996, pp. 207–209. [75] W. Heinrich and A. Jentzsch, “Optimization of flip-chip interconnects for millimeter-wave frequencies,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 637–640. [76] R. W. Jackson and R. Ito, “Modeling millimeter-wave IC behavior for flipped-chip mounting schemes,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 1919-1925, Oct. 1997. [77] A. Chandrasekhar, E. Beyne, W. D. Raedt, and B. Nauwelaers, “Accurate RF electrical characterisation of CSPs using MCM-D thin film technology,” IEEE Trans. Adv. Packag., vol. 27, pp. 203-212, Feb. 2004. [78] D. R. McCann and S. Ha, “Package characterization and development of a flip chip QFN package,” in Proc. 52th Electron. Comp. Technol. Conf., 2002, pp. 365–371. [79] J. Lin, “Chip-package codesign for high-frequency circuits and systems,” IEEE Micro., pp. 24-32, July 1998. [80] A. C. Cangellaris, “Electrical modeling and simulation challenges in chip-package codesign,” IEEE Micro., pp. 50-59, July 1998. [81] A. K. Varma, A. Glaser, and P. D. Franzon, “CAD flows for chip-package coverification,” IEEE Trans. Adv. Packag., vol. 28, pp. 96-101, Feb. 2005. [82] T. Brandtner, “Chip-package codesign flow for mixed-signal SiP designs,” IEEE Trans. Design Test Comput., vol. 23, pp. 196-202, June 2006. [83] G. Nayak and P.R. Mukund, “Chip package co-design of a heterogeneously integrated 2.45 GHz CMOS VCO using embedded passives in a silicon package,” in Proc. 17th Int. VLSI Design Conf., 2004, pp. 627-630. [84] T. Torikka, X. Duo, L.-R. Zheng, E. Tjukanoff, and H. Tenhunen, “Chip-package co-design of a concurrent LNA in system-on-package for multi-band radio applications,” in Proc. 54th Electron. Comp. Technol. Conf., 2004, pp. 1687–1692. [85] X. Duo, L.-R. Zheng, and H. Tenhunen, “Chip-package co-design of common emitter LNA in system-on-package with on-chip versus off-chip passive component analysis,” in Proc. Elect. Performance Electron. Packag., 2003, pp. 55-58. [86] S. Donnay, P. Pieters, K. Vaesen, W. Diels, P. Wambacq, W. De Raedt, E. Beyne, M. Engels, and I. Bolsens, “Chip-package codesign of a low-power 5-GHz RF front end,” Proceedings of the IEEE, Vol. 88, pp. 1583-1597, Oct. 2000. [87] P. Wambacq, S. Donnay, P. Pieters, W. Diels, K. Vaesen, W. De Raedt, E. Beyne, M. Engels, and I. Bolsens, “Chip-package co-design of a 5 GHz RF front-end for WLAN,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 2000, pp. 318–319. [88] Y. Amin, H. Tenhunen, H. Jamal, L.-R. Zheng, and X. Duo, “Chip-package codesign of receiver front end modules for RF/wireless applications,” in Proc. Wireless Comm. Applied Computational Electromag. Conf., 2005, pp. 767-770. [89] A. Chandrasekhar, S. Stoukatch, S. Brebels, J. Balachandran, E. Beyne, W. D. Raedt, B. Nauwelaers, and A. Poddar, “Characterisation, modelling and design of bond-wire interconnects for chip-package co-design,” in Proc. European Microwave Conf., 2003, pp.301-304. [90] F. Y. Han, J. M. Wu, T. S. Horng, C. C. Tu, R. Chen, and C. H. Chu, “Chip-Package-Board codesign of highly linear 3G-CDMA upconverter modules,” in Proc. 55th Electro. Comp. Technol. Conf., 2005, pp. 528-531. [91] E. Holzman, Essentials of RF and Microwave Grounding, Boston, MA: Artech House, 2006. [92] S. Kumar, M. Vice, H. Morkner and W. Lam, “Enhancement mode GaAs PHEMT LNA with linearity control (IP3) and phased matched mitigated bypass switch and differential active mixer,” in 2003 IEEE MTT-S Int. Microw. Symp. Dig., pp. 1577-1580. [93] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998. [94] J. N. Burghartz and B. Rejaei, “On the design of RF spiral inductors on silicon,” IEEE Trans. Electron. Dev., vol. 50, pp. 718-729, March 2003. [95] T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microwave Theory and Tech., vol. 52, no.5, pp. 1433-1442, May 2004. [96] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., New York, NY: Cambridge University Press, 2004. [97] B. Razavi, Design of Analog CMOS Integrated Circuits, New York, NY: McGraw-Hill Inc., 2001. [98] S. A. Maas, Noise in Linear and Nonlinear Circuits, Boston, MA: Artech House Inc., 2005. [99] L. Belostotski and J. W. Heslett, “Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, pp. 1409-1422, July 2006. [100] K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors,” IEEE Trans. Microwave Theory and Tech., vol. 54, pp. 1554-1560, April 2006. [101] P. Andreani and H. Sjöland, ”Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, pp. 835-841, Sept. 2001 [102] S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed., Boston, MA: Artech House Inc., 2003. [103] P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits, Boston, MA: Kluwer Academic Publishers, 1998. [104] V. Aparin and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 2, pp. 571-581, Feb. 2005. [105] S. Ganesan, E. Sánchez-Sinencio, and J. Silva-Martinez, “A highly linear low-noise amplifier,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 12, pp. 4079-4085, Dec. 2006. [106] G. Gramegna, M. Paparo, P. G. Erratico, and P. D. Vita, “A sub-1-dB NF 2.3-kV ESD-protected 900-MHz CMOS LNA,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1010-1017, July 2001. [107] UE Radio Transmission and Reception, 3GPP Standard 25.101 (V5.3.0), 2002. [108] A. Springer, L. Maurer, and R. Weigel, “RF system concepts for highy integrated RFICs for W-CDMA mobile radio terminals,” IEEE Trans. Microwave Theory and Tech., vol. 50, pp. 254-267, Jan. 2002. [109] G. Jue, “3GPP W-CDMA systems: design and testing,” IEEE Microwave Magazine, pp. 56-64, June 2002. [110] D. S. Malhi, L. E. Larson, D. Wang, C. Demirdag, and V. Pereira, “SiGe W-CDMA transmitter for mobile terminal application,” IEEE J. Solid-State Circuits, vol. 38, pp. 1570-1574, Sept. 2003. [111] T. J. Ellis, “A modified feed-forward technique for mixer linearization,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1423-1426. [112] B. A. Xavier. (2002, Sept. 7). A shunt feedback technique for improving the dynamic range of a balanced mixer. [Online]. Available: http://www.rfengineer.net/rfic.htm [113] V. Aparin and C. Persico, “Effects of out-of-band terminations on intermodulation distortion in common-emitter circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 977-980. [114] L. Sheng and L. E. Larson, “An Si-SiGe BiCMOS direct-conversion mixer with second-order and third-order nonlinearity cancellation for WCDMA applications,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp. 2211-2220, Nov. 2003. [115] B. Gilbert, “The micromixer: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, pp. 1412-1423, Sept. 1997. [116] Q. Wu, H. Xiao, and F. Li, "Linear RF power amplifier design for CDMA signals: a spectrum analysis approach," Microwave J., vol. 41, pp. 22-40, Dec. 1998. [117] J. S. Ko, J.K. Kim, B. K. Ko, D. B. Cheon, and B. H. Park, "Enhanced ACPR technique by class AB in PCS driver amplifier," in Proc. IEEE Int. VLSI CAD Conf., 1999, pp. 376-379. [118] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, 2nd ed., Hoboken, NJ: John Wiley & Sons Inc., 2005. [119] C. Toumazou, G. Moschytz, and B. Gilbert, Trade-Offs in Analog Circuit Design, Dordrecht, Netherlands: Kluwer Academic Publishers, 2002. [120] J. C. Pedro and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits, Norwood, MA: Artech House Inc., 2003. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外均不公開 not available 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 3.135.184.27 論文開放下載的時間是 校外不公開 Your IP address is 3.135.184.27 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |