論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
鈮酸鋰之雙包覆層晶體光纖製作與應用 The Production and Application of LiNbO3 Double-cladding crystal fiber. |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
64 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2015-01-13 |
繳交日期 Date of Submission |
2015-02-12 |
關鍵字 Keywords |
晶體光纖、相位調製器、光纖陀螺儀、光電光纖、鈮酸鋰 LiNbO3, crystal fiber, lithium niobate, E-O modulators, fiber optic gyroscope |
||
統計 Statistics |
本論文已被瀏覽 5762 次,被下載 196 次 The thesis/dissertation has been browsed 5762 times, has been downloaded 196 times. |
中文摘要 |
本論文主要為利用雷射加熱提拉生長法(Laser-heated pedestal growth, LHPG),來製作鈮酸鋰晶體與二氧化碲晶體的雙包覆層晶體光纖,並分別應用於光電相位調變器。 首先我們利用二氧化碳雷射加熱提拉生長法製作出,外層為二氧化矽玻璃,中間夾有銦錫氧化物In2O3-SnO (ITO)電極,而最內層為單晶鈮酸鋰核心的含嵌入式電極鈮酸鋰(LiNbO3)晶體光纖,並利用其作為新型光電調製器,其核心層的單晶鈮酸鋰光纖為5μm,而ITO電極間距為50μm,當中元件的半波電壓為6.6 V(Vπ),而有效電光係數為23 pm/V和0.89dB的傳輸損耗。同時我們利用此元件應用於光纖陀螺儀之相位調整,以及高速相位光開關。此外該技術可以適用於製造其他含有嵌入式銦錫氧化物電極的單晶核心光纖,這有可能使許多具有獨特特性的電調控光電光纖得以發展。 |
Abstract |
This thesis mainly focuses on producing double-cladding crystal fiber, made of lithium niobate (LiNbO3) and tellurium dioxide crystals by using Laser-Heated Pedestal Growth (LHPG), and being applied to the phase modulator and acoustic detector. First, we use CO2 LHPG to make fibers, the outercladding is SiO2 glass, the indium layer is electrode made of In2O3-SnO, the Indium Tin Oxide (ITO), while the inner core is single-crystal lithium niobate (LiNbO3) with embedded electrodes fiber, and use it as a new electro-optical modulator. The core of single-crystal lithium niobate fiber is 5μm, and the ITO electrodes gap is 50μm. The within element half-wave voltage is 6.6 V (Vπ) while the effective electro-optic coefficient is 23 pm/V and the transmission loss of 0.89dB. Meanwhile, we use this E-O modulators element applies to the phase adjustment of the fiber-optic gyroscopes and high-speed phase optical switch. In addition, this technique can be applied to the manufacture of other ITO electrodes embedded with single crystal fiber core, and makes it possible to develop a number of electrical regulation fibers with unique properties. |
目次 Table of Contents |
論文審定書 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第1章 序論 1 1.1 前言: 1 1.2 研究目的: 1 1.3 本文架構 2 第2章 鈮酸鋰晶體簡介 4 2.1 鈮酸鋰晶體(LiNbO3) 4 2.2 鈮酸鋰晶體(LiNbO3)的電光效應 9 第3章 雙包覆層鈮酸鋰(LiNbO3)晶體光纖製作 18 3.1 雷射加熱提拉生長法(Laser-heated pedestal growth, LHPG) 18 3.2 鈮酸鋰雙包覆層晶體光纖製作 19 第4章 雙包覆層鈮酸鋰(LiNbO3)晶體光纖特性量測與改善 25 4.1 雙包覆層鈮酸鋰(LiNbO3)晶體光纖電光特性量測 25 4.2 利用熱退火處理降低ITO電極電阻 26 4.3 修正電極間距與核心尺寸 28 第5章 雙包覆層鈮酸鋰(LiNbO3)晶體光纖應用 31 5.1 雙包覆層鈮酸鋰(LiNbO3)晶體光纖相位調製器 31 5.1.1 光纖陀螺儀 34 5.2 雙包覆層鈮酸鋰(LiNbO3)晶體光纖高速相位光開關 43 第6章 結論 45 參考文獻 47 |
參考文獻 References |
[1] D.Drescher, J.Koskinen, H.J Scgeibe, A.Mensch, "A model for particle growth in are deposited armophous carbon films", Diamond and Related Marerial 7,1375-1380, 1998 [2] Tatyana Volk, Manfred Wöhlecke,"Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching",Springer Science & Business Media, 2008 [3] Boris D.Zaitsev and Iren E.Kuznetsova, "Behavior of Acoustic Axes and Internal Conical Refraction in LiNbO3 and SrTiO3 Crystals Placed in an External Electric Field", IEEE Trans.Ultra.Ferro. and Freq., 45, 2, 361-336, 1998 [4] M. K. Barnoski, B. U. Chen, T. R. Joseph, Y. Ya-Min Lee and O. G. Ramer, “Integrated optic spectrum analyzer,” IEEE Trans. Circuits and Systems, CAS-26, 1113-1124, 1979 [5] G. D. Xu and C. S. Tsai, “Integrated acoustooptic modules for interferometric RF spectrum analyzers,” IEEE Photon. Technol. Lett., 3, 153-155, 1991 [6] H. Suche, D. Hiller, I. Baumann and W. Sohler, “Integrated optical spectrum analyzer with internal gain,” IEEE Photon. Technol. Lett., 7, 505-507, 1995 [7] R. Noe, A. Maucher and R. Ricken, “Spectral polarimeters based on integrated acousto-optical Ti:LiNbO3 TE-TM converters,” Fiber Integrated Opt., 18, 273-286, 1999 [8] C. S. Tsai, “Integrated acoustooptic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 529-554, 1992 [9] C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys., B35, 113-118, 984 [10] H. Shimizu, R. Ishikawa and K. Kaede, “Integrated optical frequency modulator for fiber-optic gyroscope using frequency modulation method,” Electron. Lett., 22, 334-335, 1986 [11] C. H. Bulmer and R. P. Moeller, “Fiber gyroscope with non-reciprocally operated, fiber-coupled LiNbO3 phase-shifter,” Opt. Lett., 6, 572-574, 1981 [12] C. S. Tsai and Z. Y. Cheng, “Baseband integrated acoustooptic frequency shifter modulator module for fiber optic at 1.3µm,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 40, 407-410, 1993 [13] K. Nakamura and M. Ohsaki, “Trapped-energy vibratory gyroscopes using rotated Y-cut LiNbO 3 ,” Jpn. J. Appl. Phys., 37, 2864-2867, 1998 [14] F. T. S. Yu., S. Wu., A. Mayers and S. Rajan, “Color Holographic Storage in LiNbO 3 ,” Opt. Comm., 81, ,348-352, 1991 [15] C. C. Sun, M. S. Tsaur and B. Wang, “Self-generating high-order diffraction under Bragg mismatching in LiNbO3 ,” Opt. Eng., 38, 1567-1572, 1999 [16] Y. Shen, G. Q. Zhang and J. J. Xu, “Theoretical studies on two-step, two-color holographic recording with continuous-wave lights for LiNbO3 : Fe,” OSA Trends in Opt. and Photon., 87, 634-641, 2003 [17] M. Lee and S. Takekawa, Y. Furukawa and K. Kitamur, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett., 76, 1653-1655, 2000 [18] Y. Tomita, M. Hoshi and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3 ,” Jpn. J. Appl. Phys., 40, L1035-L1037, 2001 [19] A. R. Tanguay Jr, ”Materials Requirements for Optical Processing and Computing Devices,” Opt. Eng., 24, 2-18, 1985 [20] R. Chakraborty, J. C. Biswas and S. K. Lahiri, “Analytical model for computing propagation constant of Ti:LiNbO3 periodically segmented waveguides by effective-index-based matrix method,” Opt. Eng., 42, 2624-2629, 2003 [21] C. S. Tsai, D. Y. Zang and P. Le, “Acoustooptic Bragg-diffraction in a LiNbO3 channel-planar composite waveguide with application to optical computing,” Appl. Phys. Lett., 47, 549-551, 1985 [22] A. F. Benner, H. F. Jordan and V. P. Heuring, “Digital optical computing with optically switched directional-couplers,” Opt. Eng., 30, 1936-1941, 1991 [23] V. P. Heuring, H. F. Jorfan and J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt., 31, 3213-3224, 1992 [24] J. P. Lin and S. Thaniyavarn, “Four-channel Ti: LiNbO3 Wavelength Division Multiplexer for 1.3µm Wavelength Operation,” Opt. Lett., 16, 473-475, 1991 [25] H. Okayama and M. Kawahara, “Waveguide array grating wavelength demultiplexer on LiNbO3” in Tech. Dig Integer. Photon. Res’95, OSA. ISaB3, 1995 [26] H. Okayama, M. Kawahara and T. Kamijok, “Reflective waveguide array demultiplexer in LiNbO3,” J. Lightwave Technol., 14, 985-990, 1996 [27] J. P. Lin and S. Thaniavarn, “4-channel Ti-LiNbO3 Wavelength division multiplexer for 1.3µm wavelength operation,” Opt. Lett., 16, 473-475, 1991 [28] M. Jinno, “Ultrafast time-division demultiplexer based on electrooptic on off gates,” J. Lightwave Technol., 10, 1458-1465, 1992 [29] Z. Weissman, D. Nir, S. Ruschin and A. Hardy, “AsymmetricY-junction wavelength demultiplexer based on segmented waveguides,” Appl. Phys. Lett., 67, 302-304, 1995 [30] S. J. Chang, Y. B. Lin, J. F. Liu and W. S.Wang, “Improved electro-optic modulator with ridge structure in X-cut LiNbO3 ,” J. Lightwave Technol., 17, 843-847, 1999 [31] R. C. Twu, C. C. Huang and W. S. Wang, “TE/TM mode splitter with heterogeneously coupled Ti-diffused and Ni-diffused waveguides on Z-cut lithium niobate,” Electron. Lett., 36, 220-221, 2000 [32] W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon and A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges,” J. Lightwave Technol., 17, 2551, 2000 [33] H. Nagata, Y. Li, W. R. Bosenberg and G. L. Reiff, “DC drift of X-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett., 16, 2233-2235, 2004 [34] J. M. Fuster, J. Marti and P. Candelas, “Modeling Mach-Zehnder LiNbO3 external modulators in microwave optical systems,” Microwave Opt. Technol. Lett., 30, 85-90, 2001 [35] H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett., 34, 1228-1230, 1998 [36] E. L. Wooten, R. L. Stone, E. W. Miles and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol., 14, 2530-2536, 1996 [37] P. Mollier, H. Porte and J. P. Goedgebuer, “Proton exchanged imbalanced Ti-LiNbO3 Mach-Zehnder modulator,” Appl. Phys. Lett., 60, 274-276, 1992 [38] T. Fujiwara, A. Watanabe and H. Mori, “Measurement of uniformity of driving voltage in Ti-LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett., 2, 260-261, 1990 [39] Q. Wu and X.-C. Zhang, Ultrafast electro-optic field sensors” Appl. Phys. Lett. 68 (12), 18, 1996 [40] J. R. Busch, S. D. Ramamurthi, S. L. Swartz, V. E. Wood,“"Linear electro-optic response", Electronics Liters 13th August, 28, 17, 1992 [41] B. H. Hoerman, B. M. Nichols, M. J. Nystrom,and B. W. Wessels,“Dynamic response of the electro-optic effect in epitaxial KNbO3” Appl. Phys. Lett., 75, 18, 1, 1999 [42] Q. Wu and X.-C. Zhang,“7 terahertz broadband GaP electro-optic sensor” Appl. Phys. Lett. 70 (14), 7 April 1997 [43] K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, M. Watanabe,and E. Osakabe, “Fabrication of electro-optic Pb„Zr, Ti…O3 heterostructure waveguides” Appl. Phys. Lett. 74, 19, 10, 1999 [44] Yongqiang Shi, Cheng Zhang, Hua Zhang, James H. Bechtel, Larry R. Dalton, Bruce H. Robinson, William H. Steier, “Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape”, Science, 288, 2000 [45] Min-Cheol Oh,Hua Zhang, Attila Szep, Vadim Chuyanov, and William H. Steier., Cheng Zhang and Larry R. Dalton, Hernan Erlig and Boris Tsap, Harold R. Fetterman, “Electro-optic polymer modulators for 1.55 mm wavelength using phenyltetraene bridged chromophore in polycarbonate” Appl. Phys. Lett., 76, 24, 2000 [46] William H. Steier, Antao Chen, Sang-Shin Lee, Sean Garner, Hua Zhang, Vadim Chuyanov, Larry R. Dalton, Fang Wang, Albert S. Ren, Cheng Zhang, Galina Todorova, Aaron Harper, Harold R. Fetterman, Datong Chen, Anand Udupa, Daipayan Bhattacharya, Boris Tsap, “Polymer electro-optic devices for integrated optics” ELSEVIER Chemical Physics, 245, 487–506 , 1999 [47] Hua Zhang, Min-Cheol Oh, Attila Szep, and William H. Steier, Cheng Zhang and Larry R. Dalton,Hernan Erlig and Yian Chang,Daniel H. Chang and Harold R. Fetterman, Push–pull electro-optic polymer modulators with low half-wave voltage and low loss at both 1310 and 1550 nm” ELSEVIER Chemical Physics, 245, 487–506, 1999 [48] M. N. Armenise,”Fabrication technique of lithium niobate waveguides,” IEE Proc., vol. 135, pp. 85-91, 1988. [49] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of strip load out diffusion guides on lithium niobate substrate, ” Microwave and Optical Technol. Lett., 5, 309-313, 1992 [50] C. S. Lau, S. F. Liu, P. K. Wei, and W. S. Wang, “A Mach-Zehnder interferometer made of strip-loaded outdiffusion guide,” Microwave and Optical Technol. Lett., 12, 611-613, 1992 [51] V. M. N Passaro, D. Nesheva, I. T. Savatinova, and E. Y. B. Pun, “LiNbO3 optical waveguides formed in a new proton source,” J. Lightwave Technol., 20, 71-77, 2002 [52] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in z-cut LiNbO3 ,” J. Appl. Phys., 54, 6218-6220, 1983 [53] C. C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys., 73, 3125-3132, 1993 [54] A. Loni, G. Hay, R. M. De La Rue, and J. M. Winfield, “Proton-exchanged LiNbO3 waveguides: the effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions,” J. Lightwave Technol., 7, 911-919, 1989 [55] I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, “Electro-optic effect in proton exchanged LiNbO3 and LiTaO3 waveguides,” J. Lightwave Technol., 14, 403-409, 1996 [56] C. A. Burrus and J. Stone," Single-crystal fiber optical devices: A Nd:YAG fiber laser, "Appl. Phys. Lett., 26, 318-320, 1975 [57] D. B. Gasson, B. Cockayne, “Oxide Crystal Growth using Gas Lasers,” J. of Materials Sci., 5, 100-104, 1970 [58] M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, Review of Scientific Instruments, 55, 1791-1796, 1984 [59] Wei-Lun Wang, Jau-Sheng Wang, Yi-Chung Huang, Li-Wei Liu, Sheng-Lung Huang, Wood-Hi Cheng, Photonics Technology Letters, 55, 1628-1631, 2012 [60] Bok Hyeon Kim, Songbae Moon, Un-Chul Paek and Won-Taek Han, “All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes,” Optics Express, 14, 11234-11241, 2006 [61] W. E. Martin, “A new waveguide switch/modulator for integrated optics“, Applied Physics Letters, 26, 10, 1975 [62] P.A.Thomas,"The crystal structure and absolute optical chirality of paratellurite, a-TeO", J. Phys. C: Solid State Phys., 21, 4611-4627, 1988 [63] G. Ant and H. Schweppe, “PARATELLIJRITE, A NEW PIEZOELECTRIC MATERIAL”, Solid State Communications, 6, 783 - 784, 1968 [64] Naoya Uchida, “Optical Properties of Single-Crystal Paratellurite (Te02 )”, PHYSICAL REVIEW B, 4, 10, 3736, 1971 [65] B. A. Auld, Acoustic Fields and Waves in Solids, Vol. I, Wiley, New York, 1973. [66] J. XU and R. Stroud,Acousto-Optic Devices: Principles, Design,and Applications, Wiley, New York, 1992. [67] Christopher G. Fox, W. Eddie Radford,"Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone arrays", Geophysical Research Letters, 22, 2, 131-134, 1995 [68] C. B. Leslie1, J. M. Kendall1 and J. L. Jones1, J. Acoust. Soc. Am. 28, 711 (1956) [69] Christopher G. Fox, JGR: Solid Earth, 106, B3, 4183–4206, 2001 [70] R. J. Urick, . Acoust. Soc. Am., 52, 993 (1972) [71] Magnus Wahlberg, Bertel Møhl and Peter Teglberg Madsen, J. Acoust. Soc. Am., 109, 397 (2001) [72] R C Preston, D R Bacon, A J Livett and K Rajendran, J. Phys. E: Sci.Instrum., 16 ,8, 786, 1983 [73] DAVID R.BACON, IEEE Transactions on Sonics and Ultrasonics, SU-29, 1, 1982 [74] Hiroshi KITSUNAI, Norimichi KAWASHIMA, Shinichi TAKEUCHI, Mutsuo ISHIKAWA, Minoru KUROSAWA and Etsuzo ODAIRA, Jpn. J. Appl. Phys., 45, 5B,4688, 2006 [75] C K Kirkendall and A Dandridge, “Overview of high performance fibre-optic sensing”, J. Phys. D: Appl. Phys. 37, R197-R216, 2004. [76] J. A. Bucaro1, H. D. Dardy and E. F. Carome, Acoust. Soc. Am., 62, 5, 1302, 1977 [77] Scott Foster, Alexei Tikhomirov, Mark Milnes, 17th OFS, 5855, 627, 2005 [78] W. B. Spillman, Jr. and R. L. Gravel, Opt. Lett. , 5, 1, 30, 1980 [79] A. Korpel, Acousto-Optics, Marcel Dekker, New York, 2nd edition, 1997 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |