Responsive image
博碩士論文 etd-0122124-175223 詳細資訊
Title page for etd-0122124-175223
論文名稱
Title
以機器學習方法預測共價有機骨架合成反應與產氫反應的反應能
Predicting the reaction energy of covalent organic frameworks synthesis reaction and hydrogen production reaction with the machine learning method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-02-21
繳交日期
Date of Submission
2024-02-22
關鍵字
Keywords
密度泛函理論、機器學習、人工神經網路、共價有機骨架合成反應、產氫反應
density functional theory, machine learning, artificial neural network, COF synthesis reaction, hydrogen production reaction
統計
Statistics
本論文已被瀏覽 74 次,被下載 0
The thesis/dissertation has been browsed 74 times, has been downloaded 0 times.
中文摘要
本研究使用機器學習方法,以小系統的密度泛函理論計算數據訓練機器學習模型,再以得到的模型預測大系統的能量與結構,最終由反應物與生成物的預測能量計算反應能。我們以此方法研究共價有機骨架(covalent organic frameworks,COF) 合成反應與產氫反應。對於COF 結構單元的合成反應,我們發展出以隨機微擾結構作為訓練數據的方法,隨機小幅度擾動平衡結構內的原子,再以密度泛函理論計算得到此微擾結構的能量與各原子受力。我們發展的方法可以控制數據量,並較好的對位能表面取樣,使得以此為訓練資料的機器學習模型預測效果更好,其中最精準的模型預測能量與密度泛函理論計算的平均誤差約小於15 meV/atom。對於純金屬表面的產氫催化反應,我們以1×1 與2×2 的小尺寸表面晶胞(含純表面、0.25ML 與1ML 吸附氫原子表面) 的隨機微擾結構數據為訓練資料,訓練得到的機器學習模型能準確預測3×3 與4×4 大尺寸表面晶胞的能量與結構。由大尺寸表面晶胞的預測能量計算得出的氫原子吸附能與密度泛函理論計算的結果相當,其誤差幾乎都小於100 meV。本研究實現以微小計算量的小系統結構數據,準確預測較大系統的能量與結構,且能應用預測結果於計算反應能。
Abstract
This study employed machine learning methods. We utilized density functional theory calculation to generate database for small systems. The databases was used to train machine learning models, which predicted the energy and structure of larger systems. Ultimately, the reaction energies could be calculated, based on the predicted energies of reactants and products. We used this approach to investigate the synthesis reactions of covalent organic frameworks (COF) and hydrogen production reactions. For the synthesis reactions of COF structural units, We developed a method adopting randomly perturbed structures as training data, wherein small random perturbations were introduced to the equilibrium atomic positions, and the energy and forces of these perturbed structures were calculated using density functional theory. This method allows us to controll the amount of data and improve sampling of potential energy surfaces, resulting in better predictive performance of machine learning models trained on this data. The most accurate model achieves an average error of less than 15 meV/atom when predicting the energy of density functional theory calculations. We exploited randomly perturbed structures of 1×1 and 2×2 small-sized surface cells (including pure surface, 0.25 ML and 1 ML hydrogen-absorbed surfaces) as training data to predict hydrogen catalysis reaction on the pure metal surface, and the obtained machine learning model can accurately predict the energy and structure of larger 3×3 and 4×4 surface cells by the trained models are accurately matched the results from DFT calculation. The predicted hydrogen adsorption energies for the large-sized surface cells closely align with the result of density functional theory calculations, with errors consistently below 100 meV. This research demonstrates the ability to accurately predict the energy and structure of larger systems using computational data from small systems and apply these predictions to calculate reaction energies.
目次 Table of Contents
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 有機反應與催化反應. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 有機反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 催化反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 密度泛函理論與應用. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 密度泛函理論. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 密度泛函理論的應用. . . . . . . . . . . . . . . . . . . . . . . 3
1.3 機器學習方法與應用. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 機器學習方法. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 機器學習方法於材料科學的應用. . . . . . . . . . . . . . . . 5
1.3.3 機器學習方法於化學反應的應用. . . . . . . . . . . . . . . . 7
第二章計算理論分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Born-Oppenheimer 近似. . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 單電子與多電子系統. . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Born-Oppenheimer 近似. . . . . . . . . . . . . . . . . . . . . . 11
2.2 Hartree-Fock 近似. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Hartree 近似. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Hartree-Fock 近似. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 密度泛函理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Hohenberg-Kohn 理論. . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Kohn–Sham 方程式. . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 機器學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 人工神經網路與深度神經網路. . . . . . . . . . . . . . . . . . 18
2.4.2 卷積神經網路. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
第三章計算方法與結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 計算套件與設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 VASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 SchNetPack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 COF 結構單元的合成反應. . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 以結構優化過程數據為訓練資料的模型. . . . . . . . . . . . 28
3.2.2 以隨機微擾結構數據為訓練資料的模型. . . . . . . . . . . . 30
3.2.3 以分子片段結構數據為訓練資料的模型. . . . . . . . . . . . 33
3.2.4 預測反應的結果. . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 純金屬表面的產氫催化反應. . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 以最小表面晶胞數據為訓練資料的模型. . . . . . . . . . . . 43
3.3.2 以不同氫吸附率表面晶胞數據為訓練資料的模型. . . . . . . 47
3.3.3 以表面晶胞兩層原子隨機微擾的數據為訓練資料的模型. . . 48
3.3.4 預測反應的結果. . . . . . . . . . . . . . . . . . . . . . . . . . 50
第四章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
參考文獻 References
[1] K. C. Nicolaou, “Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, 20130690 (2014) .
[2] T. F. Machado, M. E. S. Serra, D. Murtinho, A. J. M. Valente, and M. Naushad, “Covalent organic frameworks: synthesis, properties and applications—an overview”, Polymers 13, 970 (2021) .
[3] A. P. Côté, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, and O. M. Yaghi, “Porous, crystalline, covalent organic frameworks”, Science 310, 1166– 1170 (2005) .
[4] P. Kuhn, M. Antonietti, and A. Thomas, “Porous, covalent triazine￿based frameworks prepared by ionothermal synthesis”, Angewandte Chemie International Edition 47, 3450–3453 (2008) .
[5] N. L. Campbell, R. Clowes, L. K. Ritchie, and A. I. Cooper, “Rapid microwave synthesis and purification of porous covalent organic frameworks”, Chemistry of Materials 21, 204–206 (2009) .
[6] G. Lin, C. Gao, Q. Zheng, Z. Lei, H. Geng, Z. Lin, H. Yang, and Z. Cai, “Roomtemperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins”, Chemical Communications 53, 3649–3652 (2017) .
[7] S.-Y. Ding and W. Wang, “Covalent organic frameworks (cofs): from design to applications”, Chem. Soc. Rev. 42, 548–568 (2013) .
[8] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, and D. Jiang, “Covalent organic frameworks: design, synthesis, and functions”, Chemical Reviews 120, 8814–8933 (2020) .
[9] W. Hölderich, M. Hesse, and F. Näumann, “Zeolites: catalysts for organic syntheses”, Angewandte Chemie International Edition in English 27, 226–246 (1988) .
[10] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, “Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids”, Journal of the American Chemical Society 104, 1146–1147 (1982) .
[11] A. Galarneau, A. Barodawalla, and T. J. Pinnavaia, “Porous clay heterostructures formed by gallery-templated synthesis”, Nature 374, 529–531 (1995) .
[12] A. Clearfield, “Role of ion exchange in solid-state chemistry”, Chemical Reviews 88, 125–148 (1988) .
[13] B. F. Hoskins and R. Robson, “Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments”, Journal of the American Chemical Society 111, 5962–5964 (1989) .
[14] D. Su and R. Schlögl, “Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications”, ChemSusChem 3, 136–168 (2010) .
[15] M. Lindén, S. Schacht, F. Schüth, A. Steel, and K. K. Unger, “Recent advances in nano- and macroscale control of hexagonal, mesoporous materials”, Journal of Porous Materials 5, 177–193 (1998) .
[16] T. Ikariya and I. D. Gridnev, “Bifunctional transition metal-based molecular catalysts for asymmetric c-c and c-n bond formation”, Topics in Catalysis 53, 894–901 (2010) .
[17] I. Fechete, Y. Wang, and J. C. Védrine, “The past, present and future of heterogeneous catalysis”, Catalysis Today 189, 2–27 (2012) .
[18] C. M. Friend and B. Xu, “Heterogeneous catalysis: a central science for a sustainable future”, Accounts of Chemical Research 50, 517–521 (2017) .
[19] Z. Zhang, L. Liu, B. Shen, and C. Wu, “Preparation, modification and development of ni-based catalysts for catalytic reforming of tar produced from biomass gasification”, Renewable and Sustainable Energy Reviews 94, 1086–1109 (2018) .
[20] A. Liu, M. Gao, X. Ren, F. Meng, Y. Yang, L. Gao, Q. Yang, and T. Ma, “Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts”, Journal of Materials Chemistry A 8, 3541–3562 (2020) .
[21] J. Kibsgaard and I. Chorkendorff, “Considerations for the scaling-up of water splitting catalysts”, Nature Energy 4, 430–433 (2019) .
[22] C. Boyadjian and L. Lefferts, “Catalytic oxidative cracking of light alkanes to alkenes”, European Journal of Inorganic Chemistry 2018, 1956–1968 (2018) .
[23] P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Recent development in hydrogen evolution reaction catalysts and their practical implementation”, The Journal of Physical Chemistry Letters 6, 951–957 (2015) .
[24] Z. Wang, C. Li, and K. Domen, “Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting”, Chemical Society Reviews 48, 2109–2125 (2019) .
[25] H. Al￿Mahayni, X. Wang, J. Harvey, G. S. Patience, and A. Seifitokaldani, “Experimental methods in chemical engineering: density functional theory”, The Canadian Journal of Chemical Engineering 99, 1885–1911 (2021) .
[26] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules”, Physical Review 28, 1049–1070 (1926) .
[27] D. R. Hartree, “The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods”, Mathematical Proceedings of the Cambridge Philosophical Society 24, 89–110 (1928) .
[28] V. Fock, “Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems”, Zeitschrift für Physik 61, 126–148 (1930) .
[29] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Physical Review 136, B864–B871 (1964) .
[30] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Physical Review 140, A1133–A1138 (1965) .
[31] J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas”, Physical Review B 33, 8822–8824 (1986) .
[32] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Physical Review Letters 77, 3865–3868 (1996) .
[33] R. Colle and O. Salvetti, “Approximate calculation of the correlation energy for the closed shells”, Theoretica Chimica Acta 37, 329–334 (1975) .
[34] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A 38, 3098–3100 (1988) .
[35] C. Lee, W. Yang, and R. G. Parr, “Development of the colle-salvetti correlationenergy formula into a functional of the electron density”, Physical Review B 37, 785–789 (1988) .
[36] A. D. Becke, “Density-functional thermochemistry. ii. the effect of the perdewwang generalized-gradient correlation correction”, The Journal of Chemical Physics 97, 9173–9177 (1992) .
[37] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields”, The Journal of Physical Chemistry 98, 11623–11627 (1994) .
[38] K. Burke, “Perspective on density functional theory”, The Journal of Chemical Physics 136, 150901 (2012) .
[39] W. Yang, “Preface: special topic on advances in density functional theory”, The Journal of Chemical Physics 140, 18A101 (2014) .
[40] A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Challenges for density functional theory”, Chemical Reviews 112, 289–320 (2012) .
[41] P. J. Stephens, F. J. Devlin, C. S. Ashvar, K. L. Bak, P. R. Taylor, and M. J. Frisch, “Comparison of local, nonlocal, and hybrid density functionals using vibrational absorption and circular dichroism spectroscopy”, in Chemical applications of density-functional theory, Vol. 629, edited by B. Laird, R. Ross, and T Ziegler (American Chemical Society, 1996) .
[42] J. L. Durant, “Evaluation of transition state properties by density functional theory”, Chemical Physics Letters 256, 595–602 (1996) .
[43] B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, “Adiabatic connection for kinetics”, The Journal of Physical Chemistry A 104, 4811–4815 (2000) .
[44] P. J. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates, S. J. Clark, and C. J. Pickard, “Density functional theory in the solid state”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20130270 (2014) .
[45] G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, “From dft to machine learning: recent approaches to materials science–a review”, Journal of Physics: Materials 2, 032001 (2019) .
[46] J. McCarthy, M. L. Minsky, N. Rochester, and C. Shannon, “A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955”, AI Magazine 27, 12 (2006) .
[47] B. A. Newell, S. Monica, and H. A. Simon, “Gps, a program that simulates human thought”, Computers & Thought, 279–293 (1995) .
[48] J. Weizenbaum, “Eliza-a computer program for the study of natural language communication between man and machine”, Communications of the ACM 9, 36–45 (1966) .
[49] J. Lighthill, N. S. Sutherland, R. M. Needham, H. C. Longuet-Higgins, and D. Michie, Artificial intelligence: a paper symposium, tech. rep. (Science Research Council, 1973) .
[50] B. Speelpenning, “Compiling fast partial derivatives of functions given by algorithms”, PhD thesis (University of Illinois at Urbana-Champaign, 1980) .
[51] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis”, System Modeling and Optimization, 762–770 (1982) .
[52] D. E. Ruineihart, G. E. Hint, and R. J. Williams, “Learning internal representations by error propagation”, Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1, 318–362 (1986) .
[53] Y. L. Cun, “Learning process in an asymmetric threshold network”, Disordered Systems and Biological Organization 20, 233–240 (1986) .
[54] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors”, Nature 323, 533–536 (1986) .
[55] P. P. Shinde and S. Shah, “A review of machine learning and deep learning applications”, 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 1–6 (2018) .
[56] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, The Bulletin of Mathematical Biophysics 5, 115–133 (1943) .
[57] T. Cover and P. Hart, “Nearest neighbor pattern classification”, IEEE Transactions on Information Theory 13, 21–27 (1967) .
[58] J. R. Quinlan, “Induction of decision trees”, Machine Learning 1, 81–106 (1986) .
[59] T. K. Ho, “Random decision forests”, Proceedings of 3rd International Conference on Document Analysis and Recognition 1, 278–282 (1995) .
[60] C. Cortes and V. Vapnik, “Support-vector networks”, Machine Learning 20, 273– 297 (1995) .
[61] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer and System Sciences 55, 119–139 (1997) .
[62] A. L. Samuel, “Some studies in machine learning using the game of checkers”, IBM Journal of Research and Development 3, 210–229 (1959) .
[63] A. I. Khan and S. Al-Habsi, “Machine learning in computer vision”, Procedia Computer Science 167, 1444–1451 (2020) .
[64] S. Ray, “A quick review of machine learning algorithms”, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35–39 (2019) .
[65] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: state-of-the-art natural language processing”, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45 (2020) .
[66] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable machine learning for scientific insights and discoveries”, IEEE Access 8, 42200–42216 (2020) .
[67] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann, “Software engineering for machine learning: a case study”, 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 291–300 (2019) .
[68] A. Rajkomar, J. Dean, and I. Kohane, “Machine learning in medicine”, New England Journal of Medicine 380, 1347–1358 (2019) .
[69] W. Daelemans, “Explanation in computational stylometry”, CICLing 2013: Computational Linguistics and Intelligent Text Processing 7817, 451–462 (2013) .
[70] H. Surden, “Machine learning and law”, Washington Law Review 89, 87–115 (2014) .
[71] S. Mullainathan and J. Spiess, “Machine learning: an applied econometric approach”, Journal of Economic Perspectives 31, 87–106 (2017) .
[72] K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: a review”, Sensors 18, 2674 (2018) .
[73] R. Luckin and M. Cukurova, “Designing educational technologies in the age of ai: a learning sciences-driven approach”, British Journal of Educational Technology 50, 2824–2838 (2019) .
[74] J. Wei, X. Chu, X.-Y. Sun, K. Xu, H.-X. Deng, J. Chen, Z. Wei, and M. Lei, “Machine learning in materials science”, InfoMat 1, 338–358 (2019) .
[75] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, “Accelerating materials property predictions using machine learning”, Scientific Reports 3, 2810 (2013) .
[76] K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K. R. Müller, and E. K. U. Gross, “How to represent crystal structures for machine learning: towards fast prediction of electronic properties”, Physical Review B 89, 205118 (2014) .
[77] J. Zhang, L. Zhang, F. Sun, and Z. Wang, “An overview on thermal safety issues of lithium-ion batteries for electric vehicle application”, IEEE Access 6, 23848– 23863 (2018) .
[78] Y. Liu, T. Zhao, W. Ju, and S. Shi, “Materials discovery and design using machine learning”, Journal of Materiomics 3, 159–177 (2017) .
[79] G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G. Ceder, “Finding nature’s missing ternary oxide compounds using machine learning and density functional theory”, Chemistry of Materials 22, 3762–3767 (2010) .
[80] A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, and E. J. Reed, “Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials”, Energy & Environmental Science 10, 306– 320 (2017) .
[81] P. O. Dral, “Quantum chemistry in the age of machine learning”, The Journal of Physical Chemistry Letters 11, 2336–2347 (2020) .
[82] J. Behler, “Neural network potential-energy surfaces in chemistry: a tool for largescale simulations”, Physical Chemistry Chemical Physics 13, 17930 (2011) .
[83] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, “Machine learning of molecular electronic properties in chemical compound space”, New Journal of Physics 15, 095003 (2013) .
[84] Y. Mishin, “Machine-learning interatomic potentials for materials science”, Acta Materialia 214, 116980 (2021) .
[85] J. Tersoff, “New empirical approach for the structure and energy of covalent systems”, Physical Review B 37, 6991–7000 (1988) .
[86] P.-L. Kang and Z.-P. Liu, “Reaction prediction via atomistic simulation: from quantum mechanics to machine learning”, iScience 24, 102013 (2021) .
[87] J. Behler and M. Parrinello, “Generalized neural-network representation of highdimensional potential-energy surfaces”, Physical Review Letters 98, 146401 (2007) .
[88] J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural network potentials”, The Journal of Chemical Physics 134, 074106 (2011) .
[89] N. Artrith, A. Urban, and G. Ceder, “Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species”, Physical Review B 96, 014112 (2017) .
[90] G. Sun and P. Sautet, “Toward fast and reliable potential energy surfaces for metallic pt clusters by hierarchical delta neural networks”, Journal of Chemical Theory and Computation 15, 5614–5627 (2019) .
[91] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, “Big data meets quantum chemistry approximations: the δ -machine learning approach”, Journal of Chemical Theory and Computation 11, 2087–2096 (2015) .
[92] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantumchemical insights from deep tensor neural networks”, Nature Communications 8, 13890 (2017) .
[93] K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller, “Schnet: a continuous-filter convolutional neural network for modeling quantum interactions”, Advances in Neural Information Processing Systems 30, 992–1002 (2017) .
[94] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand, “Wacsf-weighted atom-centered symmetry functions as descriptors in machine learning potentials”, The Journal of Chemical Physics 148, 241709 (2018) .
[95] K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K. R. Müller, “Schnetpack: a deep learning toolbox for atomistic systems”, Journal of Chemical Theory and Computation 15, 448–455 (2019) .
[96] T. Helgaker, T. A. Ruden, P. Jørgensen, J. Olsen, and W. Klopper, “A priori calculation of molecular properties to chemical accuracy”, Journal of Physical Organic Chemistry 17, 913–933 (2004) .
[97] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals”, Physical Review B 47, 558–561 (1993) .
[98] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Materials Science 6, 15–50 (1996) .
[99] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B 54, 11169–11186 (1996) .
[100] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”, The Journal of Chemical Physics 132, 154104 (2010) .
[101] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: an imperative style, high-performance deep learning library”, in Proceedings of the 33rd international conference on neural information processing systems, Vol. 32, edited by H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, and E. B. Fox (Curran Associates Inc., 2019) .
[102] H. R. Abuzeid, A. F. EL-Mahdy, and S.-W. Kuo, “Covalent organic frameworks: design principles, synthetic strategies, and diverse applications”, Giant 6, 100054 (2021) .
[103] B. Huang and O. A. von Lilienfeld, “Quantum machine learning using atom-inmolecule- based fragments selected on the fly”, Nature Chemistry 12, 945–951 (2020) .
[104] B. Huang and O. A. von Lilienfeld, “Ab initio machine learning in chemical compound space”, Chemical Reviews 121, 10001–10036 (2021) .
[105] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, “Trends in the exchange current for hydrogen evolution”, Journal of The Electrochemical Society 152, J23 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2034-02-22
校外 Off-campus:開放下載的時間 available 2034-02-22

您的 IP(校外) 位址是 216.73.216.89
現在時間是 2025-06-17
論文校外開放下載的時間是 2034-02-22

Your IP address is 216.73.216.89
The current date is 2025-06-17
This thesis will be available to you on 2034-02-22.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2029-02-22

QR Code