Responsive image
博碩士論文 etd-0202121-164515 詳細資訊
Title page for etd-0202121-164515
論文名稱
Title
積體電路封裝失效模式分析與最佳化設計探討
A failure mode for integrated circuit packaging and design optimization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
216
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-12-12
繳交日期
Date of Submission
2021-03-02
關鍵字
Keywords
條狀翹曲、覆晶、打線、晶圓級封裝、溫度循環測試與疲勞壽命
Strip warpage, flip chip, wire-bonding, wafer level package (WLP), temperature cycle test and fatigue life
統計
Statistics
本論文已被瀏覽 134 次,被下載 0
The thesis/dissertation has been browsed 134 times, has been downloaded 0 times.
中文摘要
本研究旨於探討積體電路封裝的失效模式與設計規範準則,透過有限元素模擬模的方式來進行分析,首先針對覆晶與打線封裝技術上的條狀翹曲失效模式,釐清不同製程參數、結構設計與材料種類對於條狀翹曲的影響,本研究所開發的條狀翹曲模型與實驗值誤差值僅在13.7%以下,而過去文獻誤差都高達20%以上,並探討不同製程參數(封膠、固化烘烤與錫球植入迴焊等)、結構設計與材料種類對於條狀翹曲的影響,進行田口與最佳化分析,找出主要關鍵因子為晶粒、模製化合物以及基板厚度,次要因子為封膠溫度。提出兩種設計準則與規範,第一種提高晶片結構厚度與降低封膠溫度,藉由最佳化參數設計,使得覆晶與打線條狀翹曲降低68.30%與97.89%。但提高結構厚度不符合產品輕薄化,第二種設計準則與規範,搭配中性軸公式,採用較小的條狀中性軸(zn)與晶粒形心(zdie)間距離比率(覆晶從0.03%調整到-9.80%;打線從-1.25%調整到-10.92%),覆晶與打線製程的條狀翹曲可降低25.54%與32%,不只降低條狀翹曲,亦可減少模製化合物的成本44.44%與19.77%。第二部分,針對晶圓級封裝晶片失效模式部分,本研究成功建立晶圓級封裝晶片壽命評估模型,估算出封裝體在進行溫度循環測試時的疲勞壽命,模型估算之晶片壽命與實驗值的誤差值僅有4.6%,相較過去文獻10% 大幅改善。不僅如此,本研究更針對模製化合物不同包覆設計與厚度,分別深入探討對於晶片壽命之影響。將模製化合物厚度從產線85 µm改為25 µm,可以使晶片壽命從652次提高到1230次,超過產線需求標準500次,壽命提升為1.86倍,模製化合物使用量降為29%。綜合上述,本研究開發之條狀翹曲與晶片壽命評估模型提出的設計規範可望應用在積體電路封裝設計上,以提升產品良率與降低生產成本。
Abstract
This study aimed to investigate a failure mode for integrated circuit package and design specification. This study successfully established a design rule for flip-chip and wire-bonding package, and the error of strip warpage models is within 13.7%. In order to reduce strip warpage, the die thickness and compound thickness must be increased while and the molding temperature must be decreased. But this design does not meet the needs of light, thin, short and small production lines. To solve this problem, the structural design criteria proposed in this study use a smaller ratio of the neutral axis of the strip (zn) to the dice centroid (zdie). Results show that this strategy can reduce warpage and overall thickness of the strip effectively. Besides, an evaluation model of chip fatigue life during a temperature cycle test for WLP (wafer level package) technology is also discussed in this work. The simulation results differed from the experiment results by only 6.4%. Additionally, the effects of molding compound protection type and thickness on fatigue life are investigated. When the thickness is changed from 85 to 25 µm, the fatigue life increased to approximately 1230 cycles, which is up to 1.86 times. Reduction in molding compound thickness reduced the amount of material required to 29% in the production line. The proposed design specifications are expected to be applied to the design of integrated circuit package, and thus meet the requirement of thin and compact production lines, accelerate product development cycles, improve product quality, and reduce development costs.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xii
符號說明 xv
1. 導論 1
1.1 前言 1
1.2 積體電路封裝失效問題之現況探討 3
1.2.1條狀翹曲失效模式 3
1.2.2晶圓級封裝晶片失效模式 6
1.3 研究動機與目標 8
1.4 論文架構 10
2. 積體電路封裝模型建立 11
2.1覆晶條狀翹曲模型 11
2.1.1 覆晶晶片封裝製程流程 11
2.1.2 翹曲模型建立 13
2.2 打線條狀翹曲模擬模型 30
2.2.1 打線晶片封裝製程流程 30
2.2.2 翹曲模型建立 31
2.3晶圓級封裝晶片壽命評估模型建立 43
2.3.1 晶圓級封裝晶片製程流程 43
2.3.2 壽命評估模型建立 44
2.3.3 晶片壽命評估公式 51
3. 積體電路封裝模型驗證與設計 60
3.1 覆晶與打線條狀翹曲模型驗證 60
3.1.1覆晶條狀翹曲模型驗證 60
3.1.2打線條狀翹曲模型驗證 61
3.2 覆晶與打線條狀翹曲田口設計 63
3.2.1覆晶條狀翹曲模型田口設計 65
3.2.2打線條狀翹曲模型田口設計 69
3.3 晶圓級封裝晶片壽命評估模型驗證 73
4. 結果與討論 77
4.1最佳化分析 77
4.1.1 覆晶條狀翹曲晶片田口分析與最佳化設計 77
4.1.2 打線條狀翹曲晶片田口分析與最佳化設計 88
4.1.3 晶圓級封裝晶片 100
4.2設計準則與規範 106
4.2.1 覆晶晶片之中性軸計算 106
4.2.2 打線晶片之中性軸計算 112
4.2.3 晶圓級封裝晶片壽命 119
4.3新穎性分析 120
5. 結論與未來展望 123
5.1 結論 123
5.2 未來展望 125
參考文獻 126
附錄 132
A.條狀基板模擬模型設定流程 132
物理量選擇與研究選擇 132
幾何結構建立 137
材料參數設定 146
邊界條件設定 163
模型網格化設定 178
研究求解器設定 180
B.晶圓級封裝晶片模擬模型設定流程 183
物理量選擇與研究選擇 183
幾何結構建立 187
材料參數設定 188
邊界條件設定 194
模型網格化設定 196
研究求解器設定 197
參考文獻 References
[1] M. Chae and E. Ouyang, "Strip warpage analysis of a flip chip package considering the mold compound processing parameters," Proceedings 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, USA, 2013, pp. 441-448.
[2] S. Huber, M. von Dijk, H. Walter, O. Wittler, T. Thomas, and K. D. Lang, "Improving the FE simulation of molded packages using warpage measurements," Microelectronics Reliability, vol. 54, pp. 1862-1866, Sep. 2014.
[3] R. Dudek, H. Walter, J. Auersperg, and B. Michel, "Numerical Analysis for Thermo-Mechanical Reliability of Polymers in Electronic Packaging," Proceedings Polytronic 2007 - 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Tokyo, Japan, 2007, pp. 220-227.
[4] G. Bin, J. Dimaano, R. Chen, E. Bool, S. F. Shi, C. G. Ang, et al., "Unit warpage control with universal die thickness," Proceedings 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2014, pp. 303-306.
[5] J. Zheng, E. Zhou, L. Wang, M. Aldrete, R. Kumar, and A. Syed, "Relative and absolute warpage modeling on molded packages," Proceedings 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, USA, 2015, pp. 1538-1545.
[6] Q. M. Zhang, J. C. C. Lo, S. W. R. Lee, and W. Xu, "Correlation of Warpage Distribution With the Material Property Scattering for Warpage Range Prediction of PBGA Components," Journal of Electronic Packaging, vol. 140, p. 11, Dec. 2018.
[7] J. Hsu, A. Yang, Y. Jeong, B. Ahn, T. Koyama, K. Oi, et al., "SiP module warpage characterization and simulation study," Proceedings 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kuwana, Japan, 2018, pp. 7-12.
[8] Z. Chen, X. Zhang, S. P. S. Lim, S. S. B. Lim, B. L. Lau, Y. Han, et al., "Wafer Level Warpage Modelling and Validation for FOWLP Considering Effects of Viscoelastic Material Properties Under Process Loadings," Proceedings 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, USA, 2019, pp. 1543-1549.
[9] H. C. Cheng and Y. C. Liu, "Warpage Characterization of Molded Wafer for Fan-Out Wafer-Level Packaging," Journal of Electronic Packaging, vol. 142, pp. 011004-1-011004-10, Mar. 2019.
[10] M. Tsai and Y. Wang, "A Theoretical Solution for Thermal Warpage of Flip-Chip Packages," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, pp. 72-78, Jan. 2020.
[11] M. Y. Tsai, C. H. J. Hsu, and C. T. O. Wang, "Investigation of thermomechanical behaviors of flip chip BGA packages during manufacturing process and thermal cycling," IEEE Transactions on Components and Packaging Technologies, vol. 27, pp. 568-576, Sept. 2004.
[12] D. W. Garrett, Elevated temperature Measurements of warpage of BGA Package. Alpharetta, Georgia: Amoco Electronic Materials, 2016.
[13] V. Ramachandran and K. N. Chiang, "Feasibility Evaluation of Creep Model for Failure Assessment of Solder Joint Reliability of Wafer-Level Packaging," IEEE Transactions on Device and Materials Reliability, vol. 17, pp. 672-677, Dec. 2017.
[14] Y. L. Chen, J. Y. Jia, H. Z. Fu, and Z. Zeng, "Analysis of the BGA solder Sn-3.0Ag-0.5Cu crack interface and a prediction of the fatigue life under tensile stress," International Journal of Fatigue, vol. 87, pp. 216-224, Jun. 2016.
[15] W. C. Chuang, B. Tsai, W. L. Chen, and J. Su, "Reliability of ball grid array subjected to temperature cycling," Proceedings 2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Bordeaux, France, 2017, pp. 1-4.
[16] J. Depiver, S. Mallik, and D. E. Amalu, "Creep Response of Various Solders used in Soldering Ball Grid Array (BGA) on Printed Circuit Board (PCB)," Proceedings World Congress on Engineering and Computer Science 2019 (WCECS 2019), San Francisco, USA, 2019.
[17] A. Schubert, R. Dudek, E. Auerswald, A. Gollbardt, B. Michel, and H. Reichl, "Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation," Proceedings 53rd Electronic Components and Technology Conference, New Orleans, USA, 2003, pp. 603-610.
[18] R. Schwerz, R. Metasch, M. Roellig, and K. Meier, "FEM-study for Solder Model Comparison on Solder Joints Stress-Strain Effects," Proceedings 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 2020, pp. 1-8.
[19] A. Syed, "Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints," Proceedings 2004 Proceedings. 54th Electronic Components and Technology Conference, Las Vegas, USA, 2004, pp. 737-746 Vol.1.
[20] S. Su, F. J. Akkara, R. Thaper, A. Alkhazali, M. Hamasha, and S. d. Hamasha, "A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint," Journal of Electronic Packaging, vol. 141, pp. 040802-1-040802-13, Dec. 2019.
[21] G. Hu, S. Chew, and B. Singh, "Cure Shrinkage Analysis of Green Epoxy Molding Compound with Application to Warpage Analysis in a Plastic IC Package," Proceedings 2007 8th International Conference on Electronic Packaging Technology, Shanghai, China, 2007, pp. 1-5.
[22] C. Y. Huang, T. D. Li, and M. Y. Tsai, "Warpage measurement and design of wBGA package under thermal loading," Proceedings 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, 2009, pp. 415-418.
[23] D. H. Kim, S. J. Joo, D. O. Kwak, and H. S. Kim, "Warpage Simulation of a Multilayer Printed Circuit Board and Microelectronic Package Using the Anisotropic Viscoelastic Shell Modeling Technique That Considers the Initial Warpage," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 6, pp. 1667-1676, Nov. 2016.
[24] C. Chen, D. Yu, T. Wang, Z. Xiao, and L. Wan, "Warpage Prediction and Optimization for Embedded Silicon Fan-Out Wafer-Level Packaging Based on an Extended Theoretical Model," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, pp. 845-853, May. 2019.
[25] A. C. E. Industries, Specification for Base Materials for Rigid and Multilayer Printed Boards, IPC-4101, 1997.
[26] A. C. E. Industries, Specification for Base Materials for Rigid and Multilayer Printed Boards, IPC-4101B, 2002.
[27] Y. S. Li, "Experimental and Numerical Studies of Board-level Electronic Packages Subjected to Drop and Thermal Cycling Tests," Master thesis, Institute of Mechanical and Electrical Engineering, National Sun Yat - sen University, Kaohsiung,Taiwan, R.O.C., 2007 (in chinese).
[28] R. C. Hibbeler, Mechanics of Materials, 7th ed.: Pearson Prentice Hall, 2008.
[29] R. C. Hibbeler, Mechanics of Materials, 9th ed.: Pearson Prentice Hall, 2014.
[30] C. L. Yeh and Y. S. Lai, "A numerical approach towards the correlation between ball impact test and drop reliability," Proceedings 2006 8th Electronics Packaging Technology Conference, Singapore, Singapore, 2006, pp. 161-167.
[31] W. C. Heraeus, Bonding Wires for Semiconductor Technology. Hanau, Germany: Heraeus Deutschland GmbH & Co. KG, 2011.
[32] V. Lin, N. Kao, and D. S. Jiang, "Molded wafer level package evaluation and characterization," Proceedings 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2016, pp. 492-496.
[33] S. C. Tseng, "Investigation of the Fatigue Life of Lead-Free Solders for Flip Chip Chip Scale Package by Finite Element and Taguchi Method," PHD thesis, Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2006 (in chiese).
[34] D. H. Lee, C. H. Hsu, and B. Tsai, "Simulation and Analysis for WLCSP Protection Material Type for Package Structure ", ed: Advanced Semiconductor Engineering Inc. Bumping Process Engineering Div. , 2016.
[35] C. H. Chen, "A Study of Thermal Stress and Failure Mechanism of Solder Jointsfor Thin and Fine-pitch Ball Grid Array Package," Master thesis, Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2002 (in chinese).
[36] C. Semiconductor, Design and Manufacturing with Summit Microelectronic’s WLCSP Products Summit Microelectronics, 2010.
[37] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's Modulus of Silicon?," Journal of Microelectromechanical Systems, vol. 19, pp. 229-238, Apr. 2010.
[38] D. J. Wulpi, Understanding How Components Fail, 3rd ed. Almere, The Netherlands: ASM International, 2013.
[39] Temperature cycling: JEDEC standard JESD22-A104-G, 2000.
[40] J. H. Lau, R. S. W. Lee, and S. W. R. Lee, Chip Scale Package: Design, Materials, Process, Reliability, and Applications. New York: McGraw-Hill Education, 1999.
[41] J. L. F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal. Schenectady, New York: Knolls Atomic Power Laboratory, 1953.
[42] O. H. Basquin, "The Exponential Law of Endurance Tests," American Society for Testing and Materials Proceedings, vol. 10, pp. 625-630, 1910.
[43] W. Engelmaier, "Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 6, pp. 232-237, Sep. 1983.
[44] S. Wiese, A. Schubert, H. Walter, R. Dukek, F. Feustel, E. Meusel, et al., "Constitutive behaviour of lead-free solders vs. lead-containing solders-experiments on bulk specimens and flip-chip joints," Proceedings 2001 Proceedings. 51st Electronic Components and Technology Conference, 2001, pp. 890-902.
[45] J. H. Lau and S. R. Lee, "Modeling and analysis of 96.5Sn-3.5Ag lead-free solder joints of wafer level chip scale package on buildup microvia printed circuit board," IEEE Transactions on Electronics Packaging Manufacturing, vol. 25, pp. 51-58, 2002.
[46] P. J. Ross, Taguchi techniques for quality engineering : loss function, orthogonal experiments, parameter and tolerance design: Second edition. New York : McGraw-Hill, 1996.
[47] D. Kececioglu, Reliability & Life Testing Handbook. New Jersey: PTR Prentice Hall, 1993.
[48] M. S. K. Rahim, Z. Tiao, F. Xuejun, and G. Rupp, "Board level temperature cycling study of large array Wafer Level Package," Proceedings 2009 59th Electronic Components and Technology Conference, San Diego, USA, 2009, pp. 898-902.
[49] L. h. Chang, "Optimal design of fine pitch flip chip package by using Taguchi method," MA thesis, Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2009 (in chiese).
[50] J. Kim, S. Lee, J. Lee, S. Jung, and C. Ryu, "Warpage Issues and Assembly Challenges Using Coreless Package Substrate," Proceedings IPC APEX EXPO 2012, San Diego, USA, 2012.
[51] C. L. Dai, "In situelectrostatic microactuators for measuring the Young s modulus of CMOS thin films," Journal of Micromechanics and Microengineering, vol. 13, pp. 563-567, May. 2003.
[52] L. Shi, L. Chen, D. W. Zhang, E. Liu, Q. Liu, and C.-I. Chen, "Improvement of Thermo-Mechanical Reliability of Wafer-Level Chip Scale Packaging," Journal of Electronic Packaging, vol. 140, pp. 011002-1-011002-9, Mar. 2018.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-03-02
校外 Off-campus:開放下載的時間 available 2026-03-02

您的 IP(校外) 位址是 18.218.241.211
現在時間是 2025-05-21
論文校外開放下載的時間是 2026-03-02

Your IP address is 18.218.241.211
The current date is 2025-05-21
This thesis will be available to you on 2026-03-02.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-03-02

QR Code