論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
在一般化分數單根下ADF檢定統計量之極限分配 The Asymptotic Distribution of the Augmented Dickey-Fuller t Test under a Generally Fractionally-Integrated Process |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
48 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2004-01-14 |
繳交日期 Date of Submission |
2004-02-07 |
關鍵字 Keywords |
檢定力、極限分配、ADF單根檢定、分數單根 ADF Test, Fractional alternatives, Power, Asymptotic Distribution |
||
統計 Statistics |
本論文已被瀏覽 5882 次,被下載 1780 次 The thesis/dissertation has been browsed 5882 times, has been downloaded 1780 times. |
中文摘要 |
本文主要以Lee and Shie (2003) 的文章為基石,來推導出Augmented Dickey-Fuller (ADF Test) 單根檢定,在一般化的分數單根資料下 (例如: ARFIMA(p,1+d,q) (|d|<1/2; p,q 為正整數時) 的t檢定統計量的極限分配,進而探討其檢定力隨著所選定延滯期數增加而產生變化的原因;在文章的最後,我們提供了一些圖表來說明與蒙地卡羅模擬的證據來佐證我們的推導結論 |
Abstract |
In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions of Lee and Shie (2003). Then we discuss why the power decreases with the increasing lags in the same and large enough sample size T when d is unequal to 0. We also get that the estimator of the disturbance's variance, S^2, has slightly increasing bias with increasing k. Finally, we support the conclusion by the Monte Carlo experiments. |
目次 Table of Contents |
Catalog: 1 Introduction p.7 2 Model Setting and Denotations p.9 2.1 Population Process p.9 2.1.1 The Binomial Expansion of Fractional Diference p.10 2.1.2 Assumptions For t p.10 2.1.3 Data Generating Process p.10 2.2 Regression Model p.11 2.3 Denotations p.11 2.4 Estimation p.13 3 The Functional Central Limit Theorem p.14 4 The Propositions of Integrated Process p.15 5 Lemmas p.16 6 Theorems and Discussions p.17 6.1 Theorems p.17 6.2 Discussions p.18 6.2.1 Estimators p.18 6.2.2 Test Statistics p.19 6.3 Figures p.20 6.4 Monte Carlo Evidences p. 23 7 Conclusions p.28 8 Appendix p.29 8.1 Proof of Lemma 1-9 p.29 8.2 Proof of Theorem 1-4 p.38 *References p.44 |
參考文獻 References |
[1]Anderson, T.W., 1951, Estimating Linear Restrictions on Regression Coefficient for Multivariate Normal Distributions.Annals of Mathematical Statistics 22, 327- 351. [2]Anderson, T.W., 1971, The Statistical Analysis of Time Series, Wiley, New York. [3]Avram, F. and M.S. Taqqu, 1987, Noncentral limit theorems and appell polynomials. Annals of Probability 15, 767-775. [4]Baillie, R.T., 1996, Long memory processes and fractional integration in econometrics. Journal of Econometrics 73, 5-59. [5]Beran, J., 1994, Statistics for long-memory processes. Chapman Hall, New York. [6]Box, G.E.P., and G.M. Jenkins, 1976, Time Series Analysis : Forecasting and Control, 2nd. edn., Holden- Day, San Francisco. [7]Chung, C.F., 1994, A note on calculating the autocovariances of the fractionally integrated ARMA models. Economics Letters 45, 293-297. [8]Chung, C.F., 2002. Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processes. Econometric Theory 18, 51-78. [9]Davidson, J., 1994, Stochastic limit theory, Oxford: Oxford University Press. [10]Davidson, J. and R.M. De Jong, 2000, The functional central limit theorem and weak convergence to stochastic integrals II: Fractionally Integrated Processes, Econometric Theory 16, 643-666. [11]Davidson, J., 2002, Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. Journal of Econometrics 106, 243-269. [12]Davydov, Y.A., 1970. The invariance principle for stationary processes. Theory of Probability and Its Applications 15, 487-489. [13]Dickey, D.A. and W.A. Fuller, 1979, Distribution of the estimator for autoregressive time series with a unit root, Journal of the American Statistical Association 74, 427-431. [14]Diebold, F.X. and G.D. Rudebusch, 1991, On the power of Dickey-Fuller tests against fractional alternatives. Economics Letters 35, 155-160. [15]Dittmann, I., 2000, Residual-based tests for fractional cointegration:$;;$ A Monte Carlo study. Journal of Time Series Analysis 21, 6, 615-647. [16]Dolado, J., J. Gonzalo, and L. Mayoral, 2002, A fractional Dickey-Fuller test for unit root. Econometrica 70, 5, 1963-2006. Economics Letters 35, 155-160. [17]Geweke, J.F. and S. Porter-Hudak, 1983, The estimation and application of long memory time series models. Journal of Time Series Analysis 4, 221-238. [18]Granger, C.W.J. and R. Joyeux, 1980, An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1, 15-39. [19]Hassler, U. and J. Wolters, 1994, On the power of unit root tests against fractional alternatives. Economics Letters 45, 1-5. [20]Helson, J. and Y. Sarason, 1967, Past and future. Mathematica Scandanavia 21, 5-16. [21]Hurst , H.E., 1951, Long-term storage capacity of reserviors,Transactions of the American Society of Civil Engineers 116, 770-779. [22]Hurst , H.E., 1956, Methods of using long term storage in reservoirs, Proceedings of the Institute of Civil Engineer 1, 519-543. [23]Hurst , H.E., 1957, A suggested statistical model of some time series that occur in nature. Nature 180, 494. [24]Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Shin Y., 1992, Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we the economic time series have a unit root ? . Journal of Econometrics 54, 159-178. [25]Kramer, W., 1998, Fractional integration and the augmented Dickey-Fuller Test. Economics Letters 61, 269-272. [26]Lee, C.N. and F.S. Shie, 2003, Fractional Integration and Phillips-Perron Test. Working paper, National Sun Yat-Sen University. [27]Lee, D., and P. Schmidt, 1996, On the power of the KPSS test of stationarity against fractionally- integrated alternatives. Journal of Econometrics 73, 285-302. [28]Mandelbrot, B.B. , 1972, Statistical Methodlogy for non periodic cycles : From the covariance to R/S analysis. Annals of Economic and Social Measurement 1, 259-290. [29]Mandelbrot, B.B. and J. Wallis, 1968, Noah, Joseph and operational hydrology. Water Resources Research 4, 909- 918. [30]McLeod, A.I. and K.W. Hipel, 1978, Preservation of the rescaled adjusted range :A reassessment of the Hurst phenomenon. Water Resources Research 14, 491-508. [31]Marinucci, D., and P.M. Robinson, 1999, Alternative forms of fractional Brownian motion. Journal of Statistical Planning and Inference 80, 111-122. [32]Mielniczuk, J., 1997, Long and short-range dependent sums of infinite-order moving averages and regression estimation. Acta Sci. Math. (Szeged) 63, 301-316. [33]Nelson, C.R. and C.I. Plosser, 1982, Trends and random walks in macroeconomic time series : Some evidence and implications. Journal of Monetary Economics 10, 139- 162. [34]Newey, W. and K. West, 1987, A simple positive semi- definite, heteroscedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703-708. [35]Perron, P. and S. Ng, 1996, Useful modifications to some unit root tests with dependent errors and their local asymptotic properties. Reviews of Economic Studies 63, 435-463. [36]Phillips, P.C.B., 1987, Time series regression with a unit root. Econometrica 55, 277-301. [37]Phillips, P.C.B. and S. Ouliaris, 1990, Asymptotic properties of residual based tests for cointegration. Econometrica, 58, 1, 165-193. [38]Phillips, P.C.B. and P. Perron, 1988, Testing for a unit root in time series regression. Biometrika, 75, 2, 335-346. [39]Said, E.S. and David A. Dickey, Testing for unit root in autoregressive-moving average models of unknown order. Biometrika 71, 3, 599-607. [40]Schwert, G.W., 1987, Effects of model specification on tests for unit roots in macroeconomic data. Journal of Monetary Economics 20, 73-103. [41]Sowell, F.B., 1990, The fractional unit root distribution. Econometrica 58, 2, 495-505. [42]Stout, W.F., 1974, Almost sure convergence. Academic Press. [43]Tanaka, K., 1999, The nonstationary fractional unit root. Econometric Theory 15, 549-582. [44]Wang, Q., Y. Lin, and C. Gulati, 2003, Asymptotics for general fractionally integrated processes with applications to unit root tests. Econometric Theory, 19, 143-164. [45]White, P., 1951, Hypothesis testing in time series analysis. Almquist and Wiksells, Uppsala. [46]White, P., 1956, Variation of yield variance with plot size. Biometrika 43, 337-343. [47]White, H., 2001, Asymptotic theory for econometricians. Academic Press. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |