博碩士論文 etd-0223115-161249 詳細資訊

[回到前頁查詢結果 | 重新搜尋]

姓名 鄧龍輝(Long-hui Deng) 電子郵件信箱 denglh08@gmail.com
畢業系所 海洋科學系研究所(Department of Oceanography)
畢業學位 碩士(Master) 畢業時期 103學年第2學期
論文名稱(中) 長江口潮灘帶粉砂質沉積物中碳和氮的快速循環
論文名稱(英) Rapid turnover of carbon and nitrogen in silty intertidal sediment of the Yangtze River Estuary
  • etd-0223115-161249.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。

    紙本論文:5 年後公開 (2020-03-23 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 英文/73
    統計 本論文已被瀏覽 5647 次,被下載 42 次
    摘要(中) 愈來愈多的研究指出潮灘沉積物是元素生地化循環的一個熱點。長江口作為中國最大的河流,在其河口處分佈有面積廣闊的潮灘帶,但卻鮮有研究探討這個系統中碳和氮在潮汐作用下的動態變化。本研究利用潮汐水體動力和孔隙水流的監測、水體和沉積物樣品的時間序列採集和測量、平行對照的靜態培養實驗這三種方法,旨在查明長江口崇明島東灘沉積物中碳和氮在潮汐作用的影響下,短時間序列的動態變化。結果顯示,在潮灘淹水期,粉砂質的沉積物在強烈的潮汐動力條件下發生劇烈的再懸浮,沉積物-水體介面的物質交換可深入沉積物達8-9公分。據估算,在退潮過後,輸入潮灘沉積物的易降解有機質通量至少達240 mmol C m–2,且其中的86%都集中在沉積物的表層。淹水過後的曝露期,在緩慢但持續的垂向孔隙水流作用下,表層孔隙水及殘留上覆水中的物質被帶入沉積物深層參與氧化還原反應。據時間序列的觀測結果,沉積物孔隙水中物質的變化呈現時間上的不均勻性:>61 %的孔隙水硝酸鹽在曝露初期的一小時內即在高速的生地化反應中被移除,與此同時,有機質分解的終端產物溶解態無機碳和銨鹽也快速累積。在隨後的潮汐週期中,潮灘再次被潮水淹沒,通過孔隙水與上覆水體的交換,在曝露期被移除的硝酸鹽藉此得到補充,而累積的溶解態無機碳和銨鹽同時被輸出到水體。與這些顯著而規律的變化相比,孔隙水中溶解態有機質在潮汐的往復運動中卻保持了相對穩定的濃度,暗示該碳池反映了顆粒態有機質降解和再礦化成溶解態無機碳兩個過程間的動態平衡。進一步的估算指出,該粉砂質沉積物的有機質再礦化、硝酸鹽移除和銨鹽釋放到水體的日通量,與較為廣泛研究的粗砂質沉積物相當。最後,本研究嘗試構建了一個簡化模型,用以總結和說明在潮汐週期性運動的作用下,此類粉砂質潮灘沉積物系統中碳和氮的輸入、輸出及生地化過程。
    摘要(英) Intertidal sediment has been increasingly acknowledged as a biogeochemical hotspot for element cycling. However, the tide-driven dynamics of carbon and nitrogen in the expansive tidal flats of the Changjiang (Yangtze River) Estuary, the largest estuary of China, was barely addressed. This study investigated the short-term variations of carbon and nitrogen in the intertidal sediment of Dongtan by the use of multiple approaches including monitoring hydrodynamics of the tides and pore fluid flow, sequential sampling of estuarine waters and intertidal sediment, and parallel whole-core incubation experiments. During tidal inundation, intensive resuspension and interfacial exchange of matter down to 8–9 cm depth have been observed for the silty sediment. We estimated that at the onset of exposure, the sediment received an input of labile organic matter at least 240 mmol C m–2, ~86% of which was deposited in the top layer. Biogeochemical processes, promoted by the slow but persistent vertical pore fluid flow that transported matter across the redox boundaries, exhibited an uneven temporal distribution over the course of exposure: reactions in the first one hour accounted for >61 % of NO3– removal and accumulation of biodegradation end products (dissolved inorganic carbon (DIC) and NH4+). These solutes were then replenished (NO3–) or flushed out (DIC, NH4+) in the next round of inundation. In contrast, the concentrations of dissolved organic carbon remained relatively stable over the tidal cycle, implying a dynamic equilibrium maintained by swift decomposition of particulate organic matter and remineralization into DIC. The daily rates of remineralization, NO3–removal and NH4+ release were comparable to those reported for sandflats. A conceptual model was constructed to summarize the input, transformation, and export of carbon and nitrogen in the silty sediment within tidal cycles.
  • 粉砂質沉積物
  • 短時間變化
  • 潮汐週期
  • 關鍵字(英)
  • Tidal cycles
  • Short-term variations
  • Silty sediment
  • Nitrogen
  • Carbon
  • 論文目次 Acknowledgements i
    摘要 iii
    Abstract iv
    Contents v
    List of figures vi
    List of tables vii
    1. Introduction 1
    2. Materials and methods 5
    2.1. Site descriptions 5
    2.2. In situ measurements 6
    2.3. Measurements of fluid flow in sediment 6
    2.4. Sampling 8
    2.5. Static incubation experiments 9
    2.6. Analyses 10
    3. Results 15
    3.1. Properties of estuarine waters 15
    3.2. Solid-phase properties of the intertidal sediment 17
    3.3. Salinity and flow of pore waters 18
    3.4. Temporal variations of POM, DOC, and DIC 20
    3.5. Temporal variation of DIN 23
    3.6. Dynamics of solutes under static conditions 24
    4. Discussion 25
    4.1. Hydrodynamic conditions 25
    4.2. Sources and fates of organic matter 27
    4.3. Cycling of DIN 32
    4.4. Conceptual model 36
    4.5. Comparison and assessment 38
    5. Conclusions 41
    Reference 42
    Appendix 45
    參考文獻 Billerbeck, M., Werner, U., Bosselmann, K., Walpersdorf, E., Huettel, M. 2006a. Nutrient release from an exposed intertidal sand flat. Mar. Ecol. Prog. Ser., 316, 35–51.
    Billerbeck, M., Werner, U., Polerecky, L., Walpersdorf, E., deBeer, D., Huettel, M. 2006b. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser., 326, 61–76.
    Blum, P. 1997. Physical properties handbook. ODP Technical Note 26.
    Burdige, D.J. 2002. Sediment pore waters. In: Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, CA.
    Burdige, D.J., Gardner, K.G. 1998. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. Marine Chemistry, 62, 45–64.
    Chen, C.T.A., Borges, A.V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near–shore ecosystems as sources of atmospheric CO2. Deep-Sea Res. II, 56, 578–590.
    Chen, C.T.A., Wang, S.L. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophys. Res.: Oceans (1978–2012), 104(C9), 20675-20686.
    D’Andrea, A. F., Aller, R. C., Lopez, G. R. 2002. Organic matter flux and reactivity on a South Carolina sandflat: The impacts of porewater advection and macrobiological structures. Limnol. Oceanog., 47(4): 1056–1070.
    de Beer, D., Wenzhöfer, F., Ferdelman, T.G., et al. 2005. Transport and mineralization rates in north sea sandy intertidal sediments, Sylt–Rømø basin, Wadden sea. Limnol. Oceanogr., 50, 113–127.
    de Jonge, V.N. 1980. Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Mar. Ecol. Prog. Ser., 2, 345–353.
    de Jonge, V.N., van Beusekom, J.E.E. 1995. Wind– and tide–induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr., 40(4), 766–778.
    Deng, B., Zhang, J., Wu, Y. 2006. Recent sediment accumulation and carbon burial in the East China Sea. Global Biogeochem. Cycles, 20, GB3014.
    Drabsch, J.M., Parnell, K.E., Hume, T.M., Dolphin, T.J. 1999. The capillary fringe and the water table in an intertidal estuarine sand flat. Estuar. Coast. Shelf Sci., 48, 215–222.
    Ehrenhauss, S., Witte, U., Bühring, S.I., Huettel, M. 2004. Effect of advective pore water transport on distribution and degradation of diatoms in permeable North Sea sediments. Mar. Ecol. Prog. Ser., 271, 99–111.
    Fan, D., Tu, J., Shang, S., Cai, G. 2014. Characteristics of tidal–bore deposits and facies associations in the Qiantang Estuary, China. Mar. Geol., 348, 1–14.
    Gao, H., Schreiber, F., Collins, G., Jensen, M.M., Kostka, J.E., Lavik, G., de Beer, D., Zhou, H., Kuypers, M.M.M. 2010. Aerobic denitrification in permeable Wadden Sea sediments. ISME Journal, 4, 417–426.
    Gao, H., Matyka, M., Liu, B., Khalili, A., Kostka, J.E., Collins, G., Jansen, S., Holtappels, M., Jensen, M.M., Badewien, T.H., Beck, M., Grunwald, M., de Beer, D., Lavik, G., Kuypers, M.M.M. 2012a. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol. Oceanog., 57, 185–198.
    Gao, L., Li, D., Zhang, Y. 2012b. Nutrients and particulate organic matter discharged by the Changjiang (Yangtze River): Seasonal variations and temporal trends. J. Geophys. Res.: Biogeosciences (2005–2012), 117(G4), G04001.
    Gardner, W.S., Seitzinger, S.P., Malczyk, J.M. 1991. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux? Estuaries, 14(2), 157–166.
    Huettel, M., Berg, P., Kostka, J.E. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annu. Rev. Mar. Sci., 6, 23–51.
    Huettel, M., Ziebis, W., Forster, S. 1996. Flow–induced uptake of particulate matter in permeable sediments. Limnol. Oceanogr., 41(2), 309–322.
    Huettel, M., Ziebis, W., Forster, S., Luther III, G.W. 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim. Cosmochim. Acta, 62, 613–631.
    Huettel, M., Rusch, A. 2000. Transport and degradation of phytoplankton in permeable sediment. Limnol. Oceanogr., 45(3), 534-549.
    Hou, L.J., Liu, M., Lu, J.J., Xu, S.Y., Ou, D.N., Yang, Y., Zheng, D.G. 2006. Ammonium regeneration in intertidal sediments of the Yangtze estuary during air–exposure. Environ. Geol., 49, 937–945.
    Hou, L.J., Liu, M., Xu, S.Y., Ou, D.N., Lu, J.J., Yu, J., Cheng, S.B., Yang, Y. 2005. The effects of semi–lunar spring and neap tidal change on nutrients cycling in the intertidal sediments of the Yangtze estuary. Environ. Geol., 48, 255–264.
    Lam, P., Jensen, M.M., Lavik, G., McGinnis, D.F., Müller, B., Schubert, C.J., Amann., R., Thamdrup, B., Kuypers, M.M.M. 2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences, 104(17), 7104-7109.
    Lam, P., Lavik, G., Jensen, M.M., van de Vossenberg, J., Schmid, M., Woebken, D., Gutiérrez, D., Amann, R., Jetten, M.S.M., Kuypers, M.M.M. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci., 106, 4752–4757.
    Laursen, A.E., Seitzinger, S.P. 2002. The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments. Continental Shelf Research, 22(9), 1397-1416.
    Liu, M., Hou, L.J., Xu, S.Y., Ou, D.N., Yang, Y., Yu, J., Wang, Q. 2006. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Mar. Pollut. Bull., 52, 1625–1633.
    Liu, H., He, Q., Ji, X.Q., Wang, Y., Xu, J.J. 2008. Sediment and geomorphology differentiation of tidal flat profiles combined wave and current actions: a case of the east Chongming tidal flat, Changjiang Estuary. Acta Sedimentologica Sinica, 26(5), 833–843.
    Mackin, J.E., Swider, K.T. 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. Mar. Res., 47, 681–716.
    Mulder, A., van de Graaf, A.A., Robertson, L.A., Kuenen, J.G. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol., 16, 177–184.
    Rocha, C. 1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnol. Oceanogr., 43(5), 823–831.
    Rocha, C., Cabral, A.P. 1998. The influence of tidal action on porewater nitrate concentration and dynamics in intertidal sediments of the Sado estuary. Estuaries, 21(4), 635-645.
    Rowe, G.T., Theroux, R., Phoel, W., Quinby, H., Wilke, R., Koschoreck, D., Whitledge, T.E., Falkowski, P.G., Fray, C. 1988. Benthic carbon budgets for the continental shelf south of New England. Continental Shelf Research, 8, 511–527.
    Santos, I.R., Eyre, B.D., Huettel, M. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar. Coast. Shelf Sci., 98, 1–15.
    Seeberg–Elverfeldt, J., Schlüter, M., Feseker, T., Kölling, M. 2005. Rhizon sampling of pore waters near the sediment-water interface of aquatic systems. Limnol. Oceanogr.: Methods, 3, 361–371.
    Shi, J.Z. 2010. Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River estuary, China: a personal perspective. Geomorphology, 121(3), 133-151.
    Wolanski, E., Brinson, M.M., Cahoon, D.R., Perillo, G.M.E. 2009. Coastal wetlands: A synthesis. In: Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Oxford, UK.
    Yang, S.L., Ding, P.X., Chen, S.L. 2001. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China. Geomorphology, 38, 167–180.
    Yang, S.L., Li, H., Ysebaert, T., Bouma, T.J., Zhang, W.X., Wang, Y.Y., Li, P., Li, M., Ding, P.X. 2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls. Estuarine, Coastal and Shelf Science, 77(4), 657–671.
    Zheng, Y., Hou, L., Liu, M., Lu, M., Zhao, H., Yin, G., Zhou, J. 2013. Diversity, abundance, and activity of ammonia–oxidizing bacteria and archaea in Chongming eastern intertidal sediments. Appl. Microbiol. Biotechnol., 97, 8351–8363.
    Zhou, J., Wu, Y., Zhang, J., Kang, Q., Liu, Z. 2006. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere, 65, 310–317.
    Ziebis, W., Huettel, M., Forster, S. 1996. Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar. Ecol. Prog. Ser., 140, 227–237.
  • 洪佳章 - 召集委員
  • 劉祖乾 - 委員
  • 林玉詩 - 委員
  • 王珮玲 - 委員
  • 林玉詩 - 指導教授
  • 口試日期 2015-03-20 繳交日期 2015-03-23

    [回到前頁查詢結果 | 重新搜尋]