論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2030-03-25
校外 Off-campus:開放下載的時間 available 2030-03-25
論文名稱 Title |
以超解析螢光顯微鏡發展動態觀測胞器變化的分析方法 Development of a novel imaging method for organelle observation by super-resolution fluorescence microscopy |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
148 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2025-03-14 |
繳交日期 Date of Submission |
2025-03-25 |
關鍵字 Keywords |
細胞染料、動態、Epstein-Barr virus、粒線體、超解析徑向波動顯微術 Cellular dye, Dynamics, Epstein-Barr virus, Mitochondria, Super-Resolution Radial Fluctuations (SRRF) |
||
統計 Statistics |
本論文已被瀏覽 52 次,被下載 0 次 The thesis/dissertation has been browsed 52 times, has been downloaded 0 times. |
中文摘要 |
超解析螢光顯微鏡在生物研究領域已成為觀察細胞結構與動態過程的重要工具。由於其突破光學繞射極限的能力,超解析螢光顯微鏡能提供較傳統光學顯微鏡更高解析度的影像,從而揭示細胞內微小的結構變化。本研究的第一部分以粒線體為核心,作為細胞能量代謝中心,粒線體對環境變化敏感,且其動態變化與多種疾病相關。在本實驗中,我們測試了多種市售粒線體染料並分析其螢光特性,選擇適合雙染色的螢光染料,並設定每30秒拍攝一次,觀察粒線體在細胞暴露於缺氧環境及紫外光照射下的動態變化。這些環境條件會誘發粒線體的形態變化,可能會影響其功能與細胞健康。我們成功使用超解析徑向波動顯微術(Super-Resolution Radial Fluctuations, SRRF)觀察到在缺氧及紫外光照射的條件下,粒線體的形態由長條線狀轉變為甜甜圈狀或碎片狀,表明氧化壓力及環境改變對粒線體形態有顯著影響,可能進一步導致粒線體的功能失調或損傷。本研究的第二部分則聚焦於EBV(Epstein-Barr Virus)病毒顆粒的觀察。EBV與多種疾病相關,因此了解其進入細胞的機制至關重要。我們測試多種市售細胞膜染料並分析其螢光特性,發現MemGlow™ NR12A Membrane Polarity Probe在SRRF影像重建中效果最佳。隨後,我們使用MemGlow™ NR12A Membrane Polarity Probe搭配超音波震碎儀嘗試觀察EBV病毒顆粒。結果顯示經由PMA誘發後的HK1-EBV細胞經超音波震碎後,可以觀察到些許粒徑為100-300 nm的圓形顆粒,這些顆粒可能與EBV病毒顆粒相關,為研究EBV入侵細胞的動態機制提供新視角。 |
Abstract |
Super-resolution fluorescence microscopy has become an essential tool in biological research for observing cellular structures and dynamic processes. By surpassing the diffraction limit of conventional optical microscopy, super-resolution fluorescence microscopy provides higher-resolution images, revealing intricate structural changes within cells. The first part of this study focuses on mitochondria, which serve as the central hub of cellular energy metabolism and are highly sensitive to environmental changes. Mitochondrial dynamics are closely associated with various diseases. In our experiments, we tested multiple commercially available mitochondrial dyes and analyzed their fluorescence properties to select suitable fluorophores for dual staining. Time-lapse imaging was performed at 30-second intervals to observe mitochondrial dynamics under hypoxic conditions and ultraviolet (UV) irradiation. These environmental factors induce morphological changes in mitochondria, potentially affecting their function and cellular health. Using Super-Resolution Radial Fluctuations (SRRF) microscopy, we successfully visualized the transformation of mitochondria from elongated filamentous structures to ring-like or fragmented forms under hypoxia and UV exposure. This suggests that oxidative stress and environmental changes significantly impact mitochondrial morphology, which may further lead to functional impairment or damage. The second part of this study focuses on the observation of Epstein-Barr Virus (EBV) particles. EBV is associated with various diseases, making it crucial to understand its cellular entry mechanisms. We tested several commercially available membrane dyes and analyzed their fluorescence properties, identifying MemGlow™ NR12A Membrane Polarity Probe as the most effective for SRRF image reconstruction. Subsequently, we used MemGlow™ NR12A Membrane Polarity Probe in combination with ultrasonication to examine EBV particles. Our results showed that after PMA induction and ultrasonic disruption of HK1-EBV cells, small circular particles with diameters of 100–300 nm were observed. These particles may be associated with EBV, offering new insights into the dynamic mechanisms of EBV cell entry. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 中文摘要 iv Abstract v 目錄 vii 圖目錄 xi 表目錄 xv 第一章 超解析螢光顯微鏡介紹 1 1.1 緒論 1 1.2 傳統螢光顯微鏡 1 1.3 繞射極限 5 1.4 超解析螢光顯微鏡 9 1.5 單分子定位顯微鏡 11 1.6 超解析徑向波動顯微術 13 第二章 以超解析螢光顯微鏡觀察肌動蛋白絲、微管以及粒線體動態變化 18 2.1 肌動蛋白絲及微管介紹 18 2.2 粒線體介紹 19 2.2.1 粒線體構造 19 2.2.2 粒線體型態與疾病的關聯 21 2.2.3 粒線體常見染料 22 2.3 實驗動機 26 2.4 實驗試藥及溶液配製 26 2.4.1 實驗藥品 26 2.4.2 溶液配製 30 2.5 實驗設備 30 2.5.1 光學系統 30 2.5.2 ibidi系統 32 2.6 實驗方法 34 2.6.1 實驗用玻片製備 34 2.6.2 Huh7細胞繼代及培養於玻片 34 2.6.3 肌動蛋白絲及微管染色步驟 36 2.6.4 粒線體染色步驟 36 2.6.5 雙EMCCD系統之校正 39 2.6.6 影像及數據處理 39 2.7 結果與討論 40 2.7.1 SPY555-FastAct™濃度測試與ThunderSTORM影像重建 40 2.7.2 SPY650-FastAct™濃度測試與ThunderSTORM影像重建 42 2.7.3 ViaFluor® 488濃度測試與ThunderSTORM影像重建 44 2.7.4 ViaFluor® 647濃度測試與ThunderSTORM影像重建 46 2.7.5 MitoTracker™ Green FM probe濃度測試與SRRF影像重建 48 2.7.6 MitoTracker™ Deep red FM probe濃度測試與SRRF影像重建 50 2.7.7 NAO濃度測試與SRRF影像重建 52 2.7.8 JC-1濃度測試與SRRF影像重建 54 2.7.9 PKmito Deep Red濃度測試與SRRF影像重建 57 2.7.10 比較細胞骨架染料與粒線體染料之螢光穩定性 59 2.7.11 Resazurin對活細胞粒線體的染色成效 61 2.7.12 NAO與MitoTracker™ Deep Red FM probe對粒線體進行雙色染色 65 2.7.13 MitoTracker™ Green FM probe與PKmito Deep Red對粒線體進行雙色染色 69 2.7.14 最佳化拍攝間隔時間 73 2.7.15 缺氧環境對A549細胞粒線體的影響 77 2.7.16 UV照射對WS-1細胞的粒線體的影響 82 第三章 以超解析螢光顯微鏡觀察HK1-EBV細胞的病毒顆粒 89 3.1 Epstein-Barr病毒概述 89 3.2 研究動機 90 3.3 實驗試藥及溶液配製 91 3.3.1 實驗藥品 91 3.3.2 RPMI-1640培養液配製 94 3.3.3 含有50 ng/mL PMA的RPMI配製 94 3.3.4 含有1 mg/mL G418的RPMI配製 94 3.4 實驗設備 94 3.4.1 超音波震碎儀 94 3.4.2 即時聚合酶連鎖反應器 95 3.4.3 超解析螢光顯微鏡系統 95 3.4.4 ibid系統 95 3.5 實驗方法 95 3.5.1 HK1細胞及HK1-EBV細胞培養 95 3.5.2誘發EBV病毒 97 3.5.3篩選EBV陽性之HK1-EBV細胞 97 3.5.4細胞膜染色方法 99 3.5.5從HK1-EBV細胞中分離出EBV病毒顆粒 99 3.5.6 EBV病毒顆粒染色方法 99 3.5.7 影像和數據處理 101 3.6 結果與討論 102 3.6.1 CellMask™ Orange Plasma Membrane的濃度測試 102 3.6.2 CellMask™ Deep Red Plasma Membrane濃度測試 104 3.6.3 MemGlow™ NR4A Membrane Polarity Probe的濃度測試 106 3.6.4 MemGlow™ NR12A Membrane Polarity Probe的濃度測試 108 3.6.5 比較細胞膜染料之螢光穩定性 110 3.6.6 比較不同細胞膜染料的影像重建成效 111 3.6.7 HK1細胞之EBV誘發成效 113 3.6.8以細胞膜染料MemGlow™ NR12A Membrane Polarity Probe觀察EBV病毒顆粒 115 第四章 結論 118 參考文獻 120 |
參考文獻 References |
(1) Valeur, B.; Berberan-Santos, M. N. A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. J. Chem. Educ. 2011, 88 (6), 731-738. (2) Renz, M. Fluorescence microscopy—A historical and technical perspective. Cytom. Part A 2013, 83 (9), 767-779. (3) KASTEN, F. H. The origins of modern fluorescence microscopy and fluorescent probes. In Cell structure and function by microspectrofluorometry, Elsevier, 1989; pp 3-50. (4) Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C. Green Fluorescent Protein as a Marker for Gene Expression. Science 1994, 263 (5148), 802-805. (5) Shaw, P. J. Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging. In Handbook of biological confocal microscopy, Springer, 2006; pp 453-467. (6) Mau, A.; Friedl, K.; Leterrier, C.; Bourg, N.; Lévêque-Fort, S. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields. Nat. Commun. 2021, 12 (1), 3077. (7) Bayguinov, P. O.; Oakley, D. M.; Shih, C. C.; Geanon, D. J.; Joens, M. S.; Fitzpatrick, J. A. Modern laser scanning confocal microscopy. Curr. Protoc. Cytom. 2018, 85 (1), e39. (8) Elliott, A. D. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom. 2020, 92 (1), e68. (9) Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods. 2005, 2 (12), 932-940. (10) Yuste, R. Fluorescence microscopy today. Nat. Methods. 2005, 2 (12), 902-904. (11) Wan, Y.; McDole, K.; Keller, P. J. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu. Rev. Cell Dev. Biol. 2019, 35 (Volume 35, 2019), 655-681. (12) Wollman, A. J.; Nudd, R.; Hedlund, E. G.; Leake, M. C. From Animaculum to single molecules: 300 years of the light microscope. Open Biol. 2015, 5 (4), 150019. (13) Vangindertael, J.; Camacho, R.; Sempels, W.; Mizuno, H.; Dedecker, P.; Janssen, K. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 2018, 6 (2), 022003. (14) Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods. 2008, 5 (2), 159-161. (15) Mattheyses, A. L.; Simon, S. M.; Rappoport, J. Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J. Cell Sci. 2010, 123 (21), 3621-3628. (16) Chan, H.-M.; Chan, L.-S.; Wong, R. N.-S.; Li, H.-W. Direct Quantification of Single-Molecules of MicroRNA by Total Internal Reflection Fluorescence Microscopy. Anal. Chem. 2010, 82 (16), 6911-6918. (17) Lichtman, J. W.; Conchello, J.-A. Fluorescence microscopy. Nat. Methods. 2005, 2 (12), 910-919. (18) Pitchiaya, S.; Heinicke, L. A.; Custer, T. C.; Walter, N. G. Single Molecule Fluorescence Approaches Shed Light on Intracellular RNAs. Chem. Rev. 2014, 114 (6), 3224-3265. (19) Patterson, G. H. Fluorescence microscopy below the diffraction limit. In Seminars in cell & developmental biology, 2009; Elsevier: Vol. 20, pp 886-893. (20) Barcellona, M. L.; Gratton, E. The fluorescence properties of a DNA probe. Eur. Biophys. J. 1990, 17 (6), 315-323. (21) Leung, B. O.; Chou, K. C. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 2011, 65 (9), 967-980. (22) Synge, E. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. London Edinburgh Philos. Mag. & J. Sci. 1928, 6 (35), 356-362. (23) Ash, E. A.; Nicholls, G. Super-resolution Aperture Scanning Microscope. Nature 1972, 237 (5357), 510-512. (24) Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 1984, 44 (7), 651-653. (25) Kim, J.; Song, K.-B. Recent progress of nano-technology with NSOM. Micron 2007, 38 (4), 409-426. (26) De Lange, F.; Cambi, A.; Huijbens, R.; de Bakker, B. r.; Rensen, W.; Garcia-Parajo, M.; van Hulst, N.; Figdor, C. G. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J. Cell Sci. 2001, 114 (23), 4153-4160. (27) Hell, S.; Stelzer, E. H. Properties of a 4Pi confocal fluorescence microscope. JOSA A 1992, 9 (12), 2159-2166. (28) Hao, X.; Li, Y.; Fu, S.; Li, Y.; Xu, Y.; Kuang, C.; Liu, X. Review of 4Pi fluorescence nanoscopy. Engineering 2022, 11, 146-153. (29) Blom, H.; Brismar, H. STED microscopy: increased resolution for medical research? J. Intern. Med. 2014, 276 (6), 560-578. (30) Hirvonen, L. M.; Smith, T. A. Imaging on the nanoscale: super-resolution fluorescence microscopy. Aust. J. Chem. 2011, 64 (1), 41-45. (31) Khater, I. M.; Nabi, I. R.; Hamarneh, G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 2020, 1 (3). (32) Hess, S. T. red lights, camera, photoactivation! Nat. Methods. 2009, 6 (2), 124-125. (33) Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods. 2006, 3 (10), 793-796. (34) Heilemann, M.; Van De Linde, S.; Mukherjee, A.; Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Ed. 2009, 48 (37). (35) Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods. 2014, 11 (3), 313-318. (36) Kozma, E.; Kele, P. Fluorogenic probes for super-resolution microscopy. Org. Biomol. Chem. 2019, 17 (2), 215-233. (37) Gustafsson, N.; Culley, S.; Ashdown, G.; Owen, D. M.; Pereira, P. M.; Henriques, R. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 2016, 7 (1), 12471. (38) Fletcher, D. A.; Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 2010, 463 (7280), 485-492. (39) Janke, C.; Chloë Bulinski, J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011, 12 (12), 773-786. (40) Kishino, A.; Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 1988, 334 (6177), 74-76. (41) Dominguez, R.; Holmes, K. C. Actin structure and function. Annu. Rev. Biophys. 2011, 40 (1), 169-186. (42) Ramaekers, F. C.; Bosman, F. T. The cytoskeleton and disease. J. Pathol. 2004, 204 (4), 351-354. (43) Pullarkat, P. A.; Fernández, P. A.; Ott, A. Rheological properties of the eukaryotic cell cytoskeleton. Phys. Rep. 2007, 449 (1-3), 29-53. (44) Simcox, E. M.; Reeve, A. K. An introduction to mitochondria, their structure and functions. Mitochondrial dysfunction in neurodegenerative disorders 2016, 3-30. (45) Tait, S. W.; Green, D. R. Mitochondria and cell signalling. J. Cell Sci. 2012, 125 (4), 807-815. (46) Filler, K.; Lyon, D.; Bennett, J.; McCain, N.; Elswick, R.; Lukkahatai, N.; Saligan, L. N. Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin. 2014, 1, 12-23. (47) Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21 (4), 204-224. (48) Shami, G. J.; Cheng, D.; Verhaegh, P.; Koek, G.; Wisse, E.; Braet, F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci. Rep. 2021, 11 (1), 3319. (49) Kühlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015, 13, 1-11. (50) Herrmann, J. M.; Riemer, J. The intermembrane space of mitochondria. Antioxid. Redox Signal. 2010, 13 (9), 1341-1358. (51) Little, A. C.; Kovalenko, I.; Goo, L. E.; Hong, H. S.; Kerk, S. A.; Yates, J. A.; Purohit, V.; Lombard, D. B.; Merajver, S. D.; Lyssiotis, C. A. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun. Biol. 2020, 3 (1), 271. (52) Colina‐Tenorio, L.; Horten, P.; Pfanner, N.; Rampelt, H. Shaping the mitochondrial inner membrane in health and disease. J. Intern. Med. 2020, 287 (6), 645-664. (53) Labieniec-Watala, M.; Siewiera, K.; Gierszewski, S.; Watala, C. Mitochondria Function in Diabetes–From Health to Pathology–New Perspectives for Treatment of Diabetes-Driven Disorders. Biomedical Science, Engineering and Technology 2012, 5, 123-150. (54) Glancy, B. Visualizing mitochondrial form and function within the cell. Trends. Mol. Med. 2020, 26 (1), 58-70. (55) Wai, T.; Langer, T. Mitochondrial dynamics and metabolic regulation. TEM. 2016, 27 (2), 105-117. (56) Santos, D.; Esteves, A. R.; Silva, D. F.; Januário, C.; Cardoso, S. M. The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol. Neurobiol. 2015, 52, 573-586. (57) Park, J.-S.; Davis, R. L.; Sue, C. M. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018, 18, 1-11. (58) Lin, M. T.; Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443 (7113), 787-795. (59) Chistiakov, D. A.; Shkurat, T. P.; Melnichenko, A. A.; Grechko, A. V.; Orekhov, A. N. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann. Med. 2018, 50 (2), 121-127. (60) Madamanchi, N. R.; Runge, M. S. Mitochondrial dysfunction in atherosclerosis. Circ. Res. 2007, 100 (4), 460-473. (61) Hsu, C.-C.; Tseng, L.-M.; Lee, H.-C. Role of mitochondrial dysfunction in cancer progression. Exp. Biol. Med. 2016, 241 (12), 1281-1295. (62) Kudryavtseva, A. V.; Krasnov, G. S.; Dmitriev, A. A.; Alekseev, B. Y.; Kardymon, O. L.; Sadritdinova, A. F.; Fedorova, M. S.; Pokrovsky, A. V.; Melnikova, N. V.; Kaprin, A. D. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2016, 7 (29), 44879. (63) Shim, S.-H.; Xia, C.; Zhong, G.; Babcock, H. P.; Vaughan, J. C.; Huang, B.; Wang, X.; Xu, C.; Bi, G.-Q.; Zhuang, X. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (35), 13978-13983. (64) Li, X.; Zheng, J.; Liu, W.; Qiao, Q.; Chen, J.; Zhou, W.; Xu, Z. Long-term super-resolution imaging of mitochondrial dynamics. Chin. Chem. Lett. 2020, 31 (11), 2937-2940. (65) Wei, Y.; Kong, L.; Chen, H.; Liu, Y.; Xu, Y.; Wang, H.; Fang, G.; Shao, X.; Liu, F.; Wang, Y. Super-resolution image-based tracking of drug distribution in mitochondria of a label-free naturally derived drug molecules. Chem. Eng. J. 2022, 429, 132134. (66) Xiao, B.; Deng, X.; Zhou, W.; Tan, E.-K. Flow cytometry-based assessment of mitophagy using MitoTracker. Frontiers Media SA: 2016; Vol. 10, p 76. (67) Zhitomirsky, B.; Farber, H.; Assaraf, Y. G. LysoTracker and MitoTracker Red are transport substrates of P‐glycoprotein: implications for anticancer drug design evading multidrug resistance. J. Cell. Mol. Med. 2018, 22 (4), 2131-2141. (68) Buckman, J. F.; Hernández, H.; Kress, G. J.; Votyakova, T. V.; Pal, S.; Reynolds, I. J. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J. Neurosci. Methods 2001, 104 (2), 165-176. (69) Dong, F.; Zhu, M.; Zheng, F.; Fu, C. Mitochondrial fusion and fission are required for proper mitochondrial function and cell proliferation in fission yeast. FEBS J. 2022, 289 (1), 262-278. (70) Ferlini, C.; De Angelis, C.; Biselli, R.; Distefano, M.; Scambia, G.; Fattorossi, A. Sequence of metabolic changes during X-ray-induced apoptosis. Exp. Cell Res. 1999, 247 (1), 160-167. (71) Maftah, A.; Petit, J. M.; Ratinaud, M.-H.; Julien, R. 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem. Biophys. Res. Commun. 1989, 164 (1), 185-190. (72) PETIT, J. M.; Maftah, A.; RATINAUD, M. H.; Julien, R. 10N‐nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur. J. Biochem. 1992, 209 (1), 267-273. (73) Maftah, A.; Petit, J. M.; Julien, R. Specific interaction of the new fluorescent dye 10-N-nonyl acridine orange with inner mitochondrial membrane: A lipid-mediated inhibition of oxidative phosphorylation. FEBS Lett. 1990, 260 (2), 236-240. (74) Ferlini, C.; Scambia, G. Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. Nat. Protoc. 2007, 2 (12), 3111-3114. (75) Yang, Z.; Li, L.; Ling, J.; Liu, T.; Huang, X.; Ying, Y.; Zhao, Y.; Zhao, Y.; Lei, K.; Chen, L. Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence and nanoscopic imaging. Chem. Sci. 2020, 11 (32), 8506-8516. (76) Liu, T.; Stephan, T.; Chen, P.; Keller-Findeisen, J.; Chen, J.; Riedel, D.; Yang, Z.; Jakobs, S.; Chen, Z. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc. Natl. Acad. Sci. U.S.A. 2022, 119 (52), e2215799119. (77) Chen, L.; Dong, J.; Liao, S.; Wang, S.; Wu, Z.; Zuo, M.; Liu, B.; Yan, C.; Chen, Y.; He, H. Loss of Sam50 in hepatocytes induces cardiolipin‐dependent mitochondrial membrane remodeling to trigger mtDNA release and liver injury. Hepatol. 2022, 76 (5), 1389-1408. (78) Smiley, S. T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T. W.; Steele Jr, G. D.; Chen, L. B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. U.S.A. 1991, 88 (9), 3671-3675. (79) Reers, M.; Smiley, S. T.; Mottola-Hartshorn, C.; Chen, A.; Lin, M.; Chen, L. B. [29] Mitochondrial membrane potential monitored by JC-1 dye. In Methods Enzymol., Vol. 260; Elsevier, 1995; pp 406-417. (80) Keil, V. C.; Funke, F.; Zeug, A.; Schild, D.; Müller, M. Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflug. Arch. Eur. J. Physiol. 2011, 462, 693-708. (81) Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019, 9 (1), e3128-e3128. (82) Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017, 117 (15), 10043-10120. (83) Yang, Z.; Kang, D. H.; Lee, H.; Shin, J.; Yan, W.; Rathore, B.; Kim, H.-R.; Kim, S. J.; Singh, H.; Liu, L. A fluorescent probe for stimulated emission depletion super-resolution imaging of vicinal-dithiol-proteins on mitochondrial membrane. Bioconjugate Chem. 2018, 29 (4), 1446-1453. (84) Huang, Y.; Zhang, X.; He, N.; Wang, Y.; Kang, Q.; Shen, D.; Yu, F.; Chen, L. Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model. J. Mater. Chem. B 2019, 7 (2), 305-313. (85) Samanta, S.; He, Y.; Sharma, A.; Kim, J.; Pan, W.; Yang, Z.; Li, J.; Yan, W.; Liu, L.; Qu, J. Fluorescent probes for nanoscopic imaging of mitochondria. Chem 2019, 5 (7), 1697-1726. (86) Ding, Q.; Wang, X.; Luo, Y.; Leng, X.; Li, X.; Gu, M.; Kim, J. S. Mitochondria-targeted fluorophore: State of the art and future trends. Coord. Chem. Rev. 2024, 508, 215772. (87) Saha, P. C.; Chatterjee, T.; Pattanayak, R.; Das, R. S.; Mukherjee, A.; Bhattacharyya, M.; Guha, S. Targeting and imaging of mitochondria using near-infrared cyanine dye and its application to multicolor imaging. ACS omega 2019, 4 (11), 14579-14588. (88) Li, W.; Pan, W.; Huang, M.; Yang, Z.; He, Y.; Zhang, W.; Zhang, J.; Gu, Z.; Zhang, D.; Yan, W. Disulfide-reduction-triggered spontaneous photoblinking Cy5 probe for nanoscopic imaging of mitochondrial dynamics in live cells. Anal. Chem. 2021, 93 (4), 2596-2602. (89) Leung, C. W. T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z. A photostable AIE luminogen for specific mitochondrial imaging and tracking. J. Am. Chem. Soc. 2013, 135 (1), 62-65. (90) Lo, C. Y.-W.; Chen, S.; Creed, S. J.; Kang, M.; Zhao, N.; Tang, B. Z.; Elgass, K. D. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics. Sci. Rep. 2016, 6 (1), 30855. (91) O'brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267 (17), 5421-5426. (92) Erikstein, B. S.; Hagland, H. R.; Nikolaisen, J.; Kulawiec, M.; Singh, K. K.; Gjertsen, B. T.; Tronstad, K. J. Cellular stress induced by resazurin leads to autophagy and cell death via production of reactive oxygen species and mitochondrial impairment. J. Cell. Biochem. 2010, 111 (3), 574-584. (93) Silva, F. S. G.; Starostina, I. G.; Ivanova, V. V.; Rizvanov, A. A.; Oliveira, P. J.; Pereira, S. P. Determination of Metabolic Viability and Cell Mass Using a Tandem Resazurin/Sulforhodamine B Assay. Curr. Protoc. Toxicol. 2016, 68 (1), 2.24.21-22.24.15. (94) Frey, T. G.; Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci. 2000, 25 (7), 319-324. (95) Palade, G. E. The fine structure of mitochondria. Anat Rec. 1952, 114 (3), 427-451. (96) Fuhrmann, D. C.; Brüne, B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017, 12, 208-215. (97) Liu, X.; Hajnóczky, G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia–reoxygenation stress. Cell Death Differ. 2011, 18 (10), 1561-1572. (98) Solaini, G.; Baracca, A.; Lenaz, G.; Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta - Bioenerg. 2010, 1797 (6), 1171-1177. (99) Birch-Machin, M. A.; Swalwell, H. How mitochondria record the effects of UV exposure and oxidative stress using human skin as a model tissue. Mutagenesis 2010, 25 (2), 101-107. (100) Kim, H. J.; Jin, S.-P.; Kang, J.; Bae, S. H.; Son, J. B.; Oh, J.-H.; Youn, H.; Kim, S. K.; Kang, K. W.; Chung, J. H. Uncovering the impact of UV radiation on mitochondria in dermal cells: a STED nanoscopy study. Sci. Rep. 2024, 14 (1), 8675. (101) Zhang, R.; Fang, J.; Qi, T.; Zhu, S.; Yao, L.; Fang, G.; Li, Y.; Zang, X.; Xu, W.; Hao, W.; et al. Maternal aging increases offspring adult body size via transmission of donut-shaped mitochondria. Cell Res. 2023, 33 (11), 821-834. (102) Liu, Y.; Lui, K. S.; Ye, Z.; Fung, T. Y.; Chen, L.; Sit, P. Y.; Leung, C. Y.; Mak, N. K.; Wong, K.-L.; Lung, H. L. EBV latent membrane protein 1 augments γδ T cell cytotoxicity against nasopharyngeal carcinoma by induction of butyrophilin molecules. Theranostics 2023, 13 (2), 458. (103) Tsao, S. W.; Tsang, C. M.; Lo, K. W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. B: Biol. Sci. 2017, 372 (1732), 20160270. (104) Odumade, O. A.; Hogquist, K. A.; Balfour Jr, H. H. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin. Microbiol. Rev. 2011, 24 (1), 193-209. (105) Amon, W.; Farrell, P. J. Reactivation of Epstein‐Barr virus from latency. Rev. Med. Virol. 2005, 15 (3), 149-156. (106) Damania, B.; Kenney, S. C.; Raab-Traub, N. Epstein-Barr virus: Biology and clinical disease. Cell 2022, 185 (20), 3652-3670. (107) Jean-Pierre, V.; Lupo, J.; Buisson, M.; Morand, P.; Germi, R. Main targets of interest for the development of a prophylactic or therapeutic Epstein-Barr virus vaccine. Front. microbiol. 2021, 12, 701611. (108) Lo, Y. D.; Chan, L. Y.; Lo, K.-W.; Leung, S.-F.; Zhang, J.; Chan, A. T.; Lee, J. C.; Hjelm, N. M.; Johnson, P. J.; Huang, D. P. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999, 59 (6), 1188-1191. (109) Adler, B.; Schaadt, E.; Kempkes, B.; Zimber-Strobl, U.; Baier, B.; Bornkamm, G. W. Control of Epstein–Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc. Nat. Acad. Sci. 2002, 99 (1), 437-442. (110) Kenney, S. C. Reactivation and lytic replication of EBV. Human herpesviruses: biology, therapy, and immunoprophylaxis 2007. (111) Moynagh, P. N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway. Trends Immunol. 2005, 26 (9), 469-476. (112) Siennicka, J.; Trzcinska, A.; Czescik, A.; Dunal-Szczepaniak, M.; ŁAGOSZ, B. The influence of toll-like receptor stimulation on expression of EBV lytic genes. Pol. J. Microbiol. 2013, 62 (3), 237. (113) Gao, X.; Ikuta, K.; Tajima, M.; Sairenji, T. 12-O-Tetradecanoylphorbol-13-acetate induces Epstein–Barr virus reactivation via NF-κB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virol. 2001, 286 (1), 91-99. (114) Southern, P.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1982, 1 (4), 327-341. (115) Franke, C. A.; Rice, C. M.; Strauss, J. H.; Hruby, D. E. Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants. Mol. Cell. Biol. 1985, 5 (8), 1918-1924. (116) Lo, A. K. F.; Lo, K. W.; Tsao, S. W.; Wong, H. L.; Hui, J. W. Y.; To, K. F.; Hayward, S. D.; Chui, Y. L.; Lau, Y. L.; Takada, K. Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 2006, 8 (3), 173-180. (117) Trivedi, P.; Spinsanti, P.; Cuomo, L.; Volpe, M.; Takada, K.; Frati, L.; Faggioni, A. Differential regulation of Epstein-Barr virus (EBV) latent gene expression in Burkitt lymphoma cells infected with a recombinant EBV strain. Virol. J. 2001, 75 (10), 4929-4935. (118) Duan, X.; Chen, H.; Zhou, X.; Liu, P.; Zhang, X.; Zhu, Q.; Zhong, L.; Zhang, W.; Zhang, S.; Zhang, X. EBV infection in epithelial malignancies induces resistance to antitumor natural killer cells via F3-mediated platelet aggregation. Cancer Res. 2022, 82 (6), 1070-1083. (119) Chang, Y.; Tung, C.-H.; Huang, Y.-T.; Lu, J.; Chen, J.-Y.; Tsai, C.-H. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. Virol. J. 1999, 73 (10), 8857-8866. (120) Yang, Y.; Ding, T.; Cong, Y.; Luo, X.; Liu, C.; Gong, T.; Zhao, M.; Zheng, X.; Li, C.; Zhang, Y.; et al. Interferon-induced transmembrane protein-1 competitively blocks Ephrin receptor A2-mediated Epstein–Barr virus entry into epithelial cells. Nat. Microbiol. 2024, 9 (5), 1256-1270. (121) Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 2005, 11, 227-256. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2030-03-25 校外 Off-campus:開放下載的時間 available 2030-03-25 您的 IP(校外) 位址是 216.73.216.89 現在時間是 2025-06-24 論文校外開放下載的時間是 2030-03-25 Your IP address is 216.73.216.89 The current date is 2025-06-24 This thesis will be available to you on 2030-03-25. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2030-03-25 |
QR Code |