論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
乙炔及異丁烷之精簡機理於燃燒生成不飽和中間產物的改良與驗證 Refinements and validation of acetylene and isobutane skeletal mechanisms for formation of unsaturated intermediates in combustion |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
124 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-01-31 |
繳交日期 Date of Submission |
2020-03-30 |
關鍵字 Keywords |
乙炔、異丁烷、多環芳香烴、化學動力學機理、擴散火焰 diffusion flame, chemical kinetic mechanism, polycyclic aromatic hydrocarbon, isobutane, Acetylene |
||
統計 Statistics |
本論文已被瀏覽 5661 次,被下載 0 次 The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times. |
中文摘要 |
為了更了解異丁烷氧化及乙炔氧化於擴散火焰中芳香烴及多環芳香烴(PAH)之生成的複雜化學關係,我們提出了用於模擬異丁烷燃燒及乙炔燃燒的精簡化學反應機理,其包含了156個化學分子與1057個化學反應式和 95個化學分子及 655個化學反應式。本研究始於組裝既有的異丁烷及乙炔詳細機理與其他已發表的多環芳香烴子機理,並將組裝完成之機理與實驗中得到的延遲點火時間及火焰速度做驗證,接著透過敏感度分析的優化以及路徑通量分析的簡化,得出了本研究呈現的精簡反應機理,並利用於一維逆流火焰模型以氣相色譜質譜所量測到的排放濃度與其做驗證。此外,藉由產率分析所得到的反應路徑圖更描繪出了異丁烷分解與目標化合物生成之間的關係。首見地將乙炔–多環芳香烴化學反應機理嵌入軸對稱層流有限速率模型中,以預測共伴流火焰實驗中測量到碳數至12之碳氫化合物和芳香烴濃度。 |
Abstract |
In the purpose of understanding the complex chemistry of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAH) formations in diffusion flame of isobutane oxidation and acetylene oxidation, the skeletal iC4H10-PAH mechanism with 156 species and 1057 reactions is proposed for isobutane combustion and the skeletal C2H2-PAH mechanism with 95 species and 655 reactions is proposed for acetylene combustion. The study begins with combining the existing detail isobutane mechanism and detailed acetylene mechanism with newly added PAH sub-mechanisms and they are then validated with experiments of auto-ignition and flame speed. Through the refinement by sensitive analysis and reduction by the path flux analysis, the present mechanisms are shrunk and applied to 1D counter flow flame models to interpret the GC/MS measured concentrations of emissions in counter flow flames. Furthermore, the reaction pathway diagram produced by the rate of production analysis illustrates the correlation between the decomposition of isobutane and formation of the target species. For the first time, the mechanism of C2H2-PAH is incorporated in axisymmetric laminar finite-rate model of coflow flame for predicting the experimentally measured concentrations of hydrocarbons and aromatic compounds up to C12 species. |
目次 Table of Contents |
Table of Contents 論文審定書 i 誌謝 ii 中文摘要 iii Abstract iv Table of Contents v List of Figures viii List of Tables xi Nomenclature xiii 1 Introduction 1 1.1 Background 1 1.1.1 Acetylene oxidation 1 1.1.2 Isobutane oxidation 1 1.1.3 PAH formation 1 1.2 Literature review 2 1.2.1 Mechanisms of acetylene oxidation and pyrolysis 2 1.2.2 PAH formation from acetylene oxidation 5 1.2.3 Mechanism of isobutane 5 1.2.4 PAH formation from isobutane oxidation 7 1.3 Objectives 7 2 Methodologies 8 2.1 Mechanism construction and reduction 8 2.1.1 Mechanism construction for acetylene oxidation 8 2.1.2 Mechanism construction for isobutane oxidation 10 2.1.3 Mechanism reduction of acetylene and isobutane 12 2.2 Ignition delay times 14 2.3 Flame speed 16 2.4 Counter-flow flame 18 2.5 Simulations of non-premixed coflow flame 23 3 Results and Discussion 28 3.1 Oxidation of acetylene 28 3.1.1 Mechanism reduction 28 3.1.2 PAH formation in a counter flow flame of acetylene 28 3.1.3 Ignition delay times 31 3.1.4 Flame speed 33 3.1.5 PAH in a coflow flame 35 3.2 Oxidation of isobutane 42 3.2.1 Mechanism construction and reduction 42 3.2.2 PAH formation in a counter flow flame and mechanism refinement 43 3.2.3 Ignition delay times 53 3.2.4 Flame speed 56 4 Conclusion 57 4.1 PAH formation in oxidation of acetylene 57 4.2 PAH formation in oxidation of isobutane 58 5 References 60 Appendix 64 MATLAB code 64 acetylene mechanism 65 acetylene thermal data 72 acetylene transport data 76 isobutane mechanism 77 isobutane thermal data 98 isobutane transport data 106 |
參考文獻 References |
5 References [1] Lokachari N, Burke U, Ramalingam A, Turner M, Hesse R, Somers KP, Beeckmann J, Heufer KA, Petersen EL, Curran HJ. New experimental insights into acetylene oxidation through novel ignition delay times, laminar burning velocities and chemical kinetic modelling. Proceedings of the Combustion Institute 2019;37(1):583-91. [2] Drakon A, Eremin A, Matveeva N, Mikheyeva E. The opposite influences of flame suppressants on the ignition of combustible mixtures behind shock waves. Combustion and Flame 2017;176:592-8. [3] Fournet R, Bauge J, Battin‐Leclerc F. Experimental and modeling of oxidation of acetylene, propyne, allene and 1, 3‐butadiene. International Journal of Chemical Kinetics 1999;31(5):361-79. [4] Egolfopoulos FN, Zhu D, Law CK. Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen. Symposium (International) on Combustion. 23. Elsevier; 1991:471-8. [5] Jomaas G, Zheng X, Zhu D, Law CK. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures. Proceedings of the Combustion Institute 2005;30(1):193-200. [6] Yamamoto M, Duan S, Senkan S. The effect of strain rate on polycyclic aromatic hydrocarbon (PAH) formation in acetylene diffusion flames. Combustion and Flame 2007;151(3):532-41. [7] McEnally CS, Pfefferle LD. Comparison of non-fuel hydrocarbon concentrations measured in coflowing nonpremixed flames fueled with small hydrocarbons. Combustion and Flame 1999;117(1-2):362-72. [8] Marinov NM, Pitz WJ, Westbrook CK, Vincitore AM, Castaldi MJ, Senkan SM, Melius CF. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. Combustion and Flame 1998;114(1-2):192-213. [9] Frassoldati A, Faravelli T, Ranzi E. Kinetic modeling of the interactions between NO and hydrocarbons at high temperature. Combustion and Flame 2003;135(1-2):97-112. [10] Richter H, Granata S, Green WH, Howard JB. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute 2005;30(1):1397-405. [11] Naik CV, Puduppakkam KV, Modak A, Meeks E, Wang YL, Feng Q, Tsotsis TT. Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Combustion and Flame 2011;158(3):434-45. [12] Slavinskaya NA, Riedel U, Dworkin SB, Thomson MJ. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combustion and Flame 2012;159(3):979-95. [13] Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A, Law CK. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science 2012;38(4):468-501. [14] Wang Y, Raj A, Chung SH. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame 2013;160(9):1667-76. [15] Healy D, Donato N, Aul C, Petersen E, Zinner C, Bourque G, Curran H. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations. Combustion and Flame 2010;157(8):1540-51. [16] Flores R, McDonell V, Samuelsen G. Impact of ethane and propane variation in natural gas on the performance of a model gas turbine combustor. Journal of Engineering for Gas Turbines and Power 2003;125(3):701-8. [17] Moliere M. Benefiting from the wide Fuel capability of gas turbines: A review of application opportunities. ASME Turbo Expo 2002: Power for Land, Sea, and Air. American Society of Mechanical Engineers Digital Collection; 2002:227-38. [18] Singh P, Hui X, Sung C-J. Soot formation in non-premixed counterflow flames of butane and butanol isomers. Combustion and Flame 2016;164:167-82. [19] Karataş AE, Commodo M, Gülder OmL. Soot formation in co-and counter-flow laminar diffusion flames of binary mixtures of ethylene and butane isomers and synergistic effects. Energy & Fuels 2010;24(9):4912-8. [20] Donato N, Aul C, Petersen E, Zinner C, Curran H, Bourque G. Ignition and oxidation of 50/50 butane isomer blends. Journal of Engineering for Gas Turbines and Power 2010;132(5). [21] Gersen S, Mokhov A, Darmeveil J, Levinsky H. Ignition properties of n-butane and iso-butane in a rapid compression machine. Combustion and Flame 2010;157(2):240-5. [22] Davis S, Law CK. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combustion Science and Technology 1998;140(1-6):427-49. [23] Schenk M, Hansen N, Vieker H, Beyer A, Gölzhäuser A, Kohse-Höinghaus K. PAH formation and soot morphology in flames of C4 fuels. Proceedings of the Combustion Institute 2015;35(2):1761-9. [24] Singh P, Sung C-J. PAH formation in counterflow non-premixed flames of butane and butanol isomers. Combustion and Flame 2016;170:91-110. [25] Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law C. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Combustion Kinetics Laboratory, University of Southern California, Los Angeles, CA, accessed Aug 2007;21:2017. [26] Saggese C, Ferrario S, Camacho J, Cuoci A, Frassoldati A, Ranzi E, Wang H, Faravelli T. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combustion and Flame 2015;162(9):3356-69. [27] Lima ALC, Farrington JW, Reddy CM. Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environmental Forensics 2005;6(2):109-31. [28] Dat N-D, Chang MB. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment 2017;609:682-93. [29] Chunhui W, Shaohua W, Shenglu Z, Yaxing S, Jing S. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review. Pedosphere 2017;27(1):17-26. [30] Baek S, Field R, Goldstone M, Kirk P, Lester J, Perry R. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, Air, and Soil Pollution 1991;60(3-4):279-300. [31] Laflamme RE, Hites RA. The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochimica et Cosmochimica Acta 1978;42(3):289-303. [32] Tan Y, Heit M. Biogenic and abiogenic polynuclear aromatic hydrocarbons in sediments from two remote Adirondack lakes. Geochimica et Cosmochimica Acta 1981;45(11):2267-79. [33] Wakeham SG, Schaffner C, Giger W. Polycyclic aromatic hydrocarbons in recent lake sediments—I. Compounds having anthropogenic origins. Geochimica et Cosmochimica Acta 1980;44(3):403-13. [34] U.S.EPA. Health Assessment Document for Diesel Engine Exhaust (Final 2002). US Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington, DC, EPA/600/8-90/057F 2002. [35] Norinaga K, Deutschmann O. Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons. Industrial & Engineering Chemistry Research 2007;46(11):3547-57. [36] Gimenez‐Lopez J, Rasmussen CT, Hashemi H, Alzueta MU, Gao Y, Marshall P, Goldsmith CF, Glarborg P. Experimental and kinetic modeling study of C2H2 oxidation at high pressure. International Journal of Chemical Kinetics 2016;48(11):724-38. [37] Laskin A, Wang H. On initiation reactions of acetylene oxidation in shock tubes: A quantum mechanical and kinetic modeling study. Chemical Physics Letters 1999;303(1-2):43-9. [38] Tan Y, Dagaut P, Cathonnet M, Boettner J-C. Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling. Combustion Science and Technology 1994;102(1-6):21-55. [39] Dagaut P, Lecomte F, Chevailler S, Cathonnet M. Experimental and kinetic modeling of nitric oxide reduction by acetylene in an atmospheric pressure jet-stirred reactor. Fuel 1999;78(11):1245-52. [40] Slavinskaya N, Mirzayeva A, Whitside R, Starke J, Abbasi M, Auyelkhankyzy M, Chernov V. A modelling study of acetylene oxidation and pyrolysis. Combustion and Flame 2019;210:25-42. [41] Ogura T, Nagumo Y, Miyoshi A, Koshi M. Chemical kinetic mechanism for high temperature oxidation of butane isomers. Energy & Fuels 2007;21(1):130-5. [42] Dagaut P, Luche J, Cathonnet M. Experimental and Kinetic Modeling of the Reduction of NO by Isobutane in a Jsr at 1 Atm. International Journal of Chemical Kinetics 2000;32(6):365-77. [43] McEnally CS, Pfefferle LD. Fuel decomposition and hydrocarbon growth processes for oxygenated hydrocarbons: butyl alcohols. Proceedings of the Combustion Institute 2005;30(1):1363-70. [44] Wang H, Reitz RD, Yao M, Yang B, Jiao Q, Qiu L. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combustion and Flame 2013;160(3):504-19. [45] Weber BW, Pitz WJ, Mehl M, Silke EJ, Davis AC, Sung C-J. Experiments and modeling of the autoignition of methylcyclohexane at high pressure. Combustion and Flame 2014;161(8):1972-83. [46] Park S, Wang Y, Chung SH, Sarathy SM. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. Combustion and Flame 2017;178:46-60. [47] Gou X, Sun W, Chen Z, Ju Y. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combustion and Flame 2010;157(6):1111-21. [48] Sun W, Chen Z, Gou X, Ju Y. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combustion and Flame 2010;157(7):1298-307. [49] Design R. CHEMKIN-CFD for FLUENT 20112. Reaction Design, San Diego, CA 2013. [50] Ravi S, Sikes T, Morones A, Keesee C, Petersen E. Comparative study on the laminar flame speed enhancement of methane with ethane and ethylene addition. Proceedings of the Combustion Institute 2015;35(1):679-86. [51] Shen X, Yang X, Santner J, Sun J, Ju Y. Experimental and kinetic studies of acetylene flames at elevated pressures. Proceedings of the Combustion Institute 2015;35(1):721-8. [52] Bosschaart KJ, De Goey L. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combustion and Flame 2004;136(3):261-9. [53] ANSYS C. Solver Theory Guide, Release 16.1. ANSYS Inc., Canonsburg, Pennsylvania, USA; 2015. [54] Smooke M, McEnally C, Pfefferle L, Hall R, Colket M. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combustion and Flame 1999;117(1-2):117-39. [55] Xuan Y, Blanquart G. Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame. Combustion and Flame 2013;160(9):1657-66. [56] Faravelli T, Ranzi E, Frassoldati A. Primary Reference Fuels (PRF) + PAH mechanism (Version 1412, December 2014). The CRECK Modeling Group (Politecnico di Milano) 2014. [57] Prince JC, Treviño C, Williams FA. A reduced reaction mechanism for the combustion of n-butane. Combustion and Flame 2017;175:27-33. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |