Responsive image
博碩士論文 etd-0314112-175817 詳細資訊
Title page for etd-0314112-175817
論文名稱
Title
應用於無線系統封裝之高度微型化帶通濾波器
Highly Miniaturized Bandpass Filters for Wireless System-in-Package Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-03-09
繳交日期
Date of Submission
2012-03-14
關鍵字
Keywords
內埋被動元件基板、帶通濾波器、平面型變壓器、積體化被動元件、傳輸零點
Embedded Passive Substrate, Bandpass Filters, Integrated Passive Devices, Planar Transformer, Transmission Zeros
統計
Statistics
本論文已被瀏覽 5795 次,被下載 277
The thesis/dissertation has been browsed 5795 times, has been downloaded 277 times.
中文摘要
本論文研究並實現應用於無線系統封裝之高度微型化帶通濾波器設計,濾波器合成理論採用耦合矩陣合成方法,根據所欲實現之設計規格,在幾何結構上選擇適當的饋入點與耦合間距來滿足所對應之外部品質因子與耦合係數。耦合矩陣合成方法提供一快速便捷的方式來設計高性能帶通濾波器,但目前大多實現於微帶線結構上;常見之微帶線帶通濾波器雖然具有高性能但所佔面積過大而不易整合於系統封裝之中。本論文提出在內埋被動元件基板內實現堆疊電感-電容式諧振器架構與堆疊式螺旋電感諧振器架構來實現微型化之單頻與多頻帶通濾波器設計,且每個頻帶兩側皆有傳輸零點來提高禁帶衰減量;所實現之微型化帶通濾波器,其性能與面積皆可與低溫共燒陶瓷基板帶通濾波器相較量。除了內埋被動元件基板技術之外,積體化被動元件製程技術在目前系統封裝中也常被用以實現各種射頻被動元件,積體化被動元件製程可同時提供高繞線密度之高感值電感器與薄層且高介電係數之高容值電容器;本論文善用此製程特色來實現高繞線密度之平面變壓器型微小化帶通濾波器設計。又因為此平面變壓器具有良好的結構對稱性,故也適合用於實現平衡性元件;所實現之變壓器型巴倫式帶通濾波器除了具有面積微小化的特色外,同時也具有出色共模拒斥比之平衡性效果。此外,本論文中所實現之各種帶通濾波器設計,其電磁模擬結果與實際量測數據皆具高度吻合。
Abstract
This dissertation studies and implements highly miniaturized bandpass filter designs for wireless System-in-Package (SiP) applications. Based on the coupling matrix synthesis method, the external quality factors and coupling coefficients can be extracted by selecting the proper tapped-line feeding position and coupling spacing in geometrical configuration. Despite their high performance, most conventional microstrip bandpass filter designs require a bulky area for achieving, making them difficult to implement SiP applications. This dissertation first develops a stacked LC resonator and a stacked spiral resonator (SSR) in an embedded passive substrate (EPS) for realizing miniature single- and multi-band bandpass filters. Moreover, multiple transmission zeros created on both sides of each passband provide high stopband roll-off rates. The designed performance and size are comparable to those of low-temperature co-fired ceramic (LTCC) bandpass filters. As another conventional means of implementing RF passive components, the integrated passive device (IPD) process can produce large-value inductors and high-density capacitors, simultaneously. This dissertation fully utilizes the advantages of IPD technology to implement very compact bandpass filter designs with multiple transmission-zero frequencies at stopband by using a high-density wiring planar transformer configuration. Furthermore, due to the fully symmetric geometry, the transformer-coupled bandpass filter can be easily converted into a balun bandpass filter, capable of providing a superior balance performance with a significantly higher common mode rejection ratio (CMRR) level. The electromagnetic (EM) simulation results, as obtained by using Ansys-Ansoft HFSS, agree with the measurement results for all of the proposed designs in this dissertation.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Planar Filter Technologies for SiP Applications 2
1.2.1 Low-Temperature Co-Fired Ceramic Substrate (LTCC) 2
1.2.2 Embedded Passive Substrate (EPS) 3
1.2.3 Integrated Passive Device Substrate (IPD) 4
1.3 Overview of Dissertation 6
2 Bandpass Filter Design Using Stacked LC Resonators 8
2.1 Design Methodology for Implementing Coupled Bandpass Filters 8
2.2 Stacked LC Resonator-Based Bandpass Filter Designs 11
2.2.1 Second-Order Bandpass Filter Design 11
2.2.2 Fourth-Order Bandpass Filter Design 12
2.2.3 Tuning of Transmission Zeros 13
2.3 Trisection Bandpass Filter Design with a Nearby Stopband Rejection 16
3 Multiband Bandpass Filter Design Using Stacked Spiral Resonators 19
3.1 Stacked Spiral Resonators 19
3.1.1 Dual-Resonance Resonator 19
3.1.2 Triple-Resonance Resonator 23
3.2 Dual-Band Bandpass Filter Design 25
3.3 Triple-Band Bandpass Filter Design 30
4 Integrated Transformer-Coupled Balun Bandpass Filter Design 38
4.1 Design of Transformer-Coupled Bandpass Filters 38
4.2 Creation and Matching of Balun Balanced Port 45
4.2.1 Balanced Output Matching Approach 46
4.2.2 Single-Ended Input Matching Approach 48
4.3 Bandwidth-Dependent CMRR 51
5 Integrated Dual-Band and Dual-Mode Bandpass Filter Design 56
5.1 Dual-Resonance Composite Resonators 56
5.1.1 Dual-Resonance Resonator with a Grounded Inductor 57
5.1.2 Dual-Resonance Resonator with a Parallel Capacitor 58
5.2 Dual-Mode Bandpass Filter Design 59
5.2.1 Dual-Mode Passband Design 59
5.2.2 Transmission-Zero Creation 60
5.2.3 Experimental Results 62
5.3 Dual-Band Bandpass Filter Design 65
5.3.1 Dual Passband Design 65
5.3.2 Transmission-Zero Mechanism 67
5.3.3 Experimental Results 67
6 Conclusions 71
Bibliography 73
Vita 84
參考文獻 References
[1] Q. X. Chu and H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 431–439, Feb. 2008.
[2] Y. Mu and Z Ma, D. Xu; “A novel compact interdigital bandpass filter using multilayer cross-coupled folded quarter-wavelength resonators,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 847–849, Dec. 2005.
[3] C.-C. Chen, Y.-R. Chen, and C.-Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 120–131, Jan. 2003.
[4] A. Djaiz and A. Denidni, “A new compact microstrip two-layer bandpass filter using aperture-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1929–1936, May. 2006.
[5] U. Y. Kongpop, E. J. Wollack, T. Doiron, J. Papapolymerou, and J. Laskar, “A Bandpass Filter Design Using Half-Wavelength Stepped Impedance Resonators With Internal Couplings,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 8, pp. 443–445, Aug. 2006.
[6] A. Abdel-Rahman, A. R. Ali, S. Amari, and A. S. Omar, “Compact bandpass filters using defected ground structure (DGS) coupled resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 12–17.
[7] S.-C. Lin, C.-H. Wang, C.-H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 137–146, Jan. 2007.
[8] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 755–762, Feb. 2006.
[9] X. Y. Zhang and Q. Xue, “Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2183–2190, Oct. 2007.
[10] E. E. Djoumessi and K. Wu, “Multilayer dual-mode dual-bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 21–23, Jan. 2009.
[11] X. Luo, H. Qian, J.-G. Ma, K. Ma, and K. S. Yeo, “Compact dual-band bandpass filters using novel embedded spiral resonator (ESR),” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 435–437, Aug. 2010.
[12] P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[13] Z. Zhang, Y.-C. Jiao, X.-M. Wang, and S.-F. Cao, “Design of a compact dual-band bandpass filter using opposite hook-shaped resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 7, pp. 359–361, Jul. 2011.
[14] Q.-X. Chu, F.-C. Chen, Z.-H. Tu, and H. Wang, “A novel crossed resonator and its applications to bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1753–1759, Jul. 2009.
[15] P. K. Singh, S. Basu, and Y.-H. Wang, “Miniature dual-band filter using quarter wavelength stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 88–90, Feb. 2008.
[16] Y.-C. Chang, C.-H. Kao, M.-H. Weng, and R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780–782, Dec. 2009.
[17] C.-H. Tseng and H.-Y. Shao, “A new dual-band microstrip bandpass filter using net-type resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 196–198, Apr. 2010.
[18] C.-I. G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[19] Q.-X. Chu and X.-M. Lin, “Advanced triple-band bandpass filter using tri-section SIR,” Electron. Lett., vol. 44, no. 4, pp. 295–296, Feb., 2008.
[20] Y. Sung, “Dual-mode dual-band filter with band notch structures,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 73–75, Feb. 2010.
[21] S. Luo, L. Zhu, and S. Sun, “A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3427–3432, Dec. 2010.
[22] S. Luo, L. Zhu, and S. Sun, “Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1222–1229, May 2011.
[23] X. Y. Zhang, Q. Xue, and B. J. Hu, “Planar tri-band bandpass filter with compact size,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 262–264, May 2010.
[24] X. Lai, C.-H. Liang, H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 265–267, May 2010.
[25] M. Zhou, X. Tang, and F. Xiao, “Compact dual band transversal bandpass filter with multiple transmission zeros and controllable bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 347–349, Jun. 2009.
[26] B.-J. Chen, T.-M. Shen, and R.-B. Wu, “Design of tri-band filters with improved band allocation,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1790–1797, Jul. 2009.
[27] C.-F. Chang, and S.-J. Chung, “Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 2383–2388, Jul. 2005.
[28] L. K. Yeung and K. L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[29] K. Liu, R. Frye, and R. Emigh, “Band-pass-filter with balun function from IPD technology,” in Proc. Electron. Comp. Technol. Conf., 2008, pp. 718–723.
[30] R. C. Frye, K. Liu, and Y. Lin, “Three-stage bandpass filters implemented in silicon IPD technology using magnetic coupling between resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 783–786.
[31] C.-W. Tang, C.-W. Shen, and P.-J. Hsieh, “Design of low-temperature co-fired ceramic bandpass filters with modified coupled inductors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 172–179, Jan. 2009.
[32] M. Höft and T. Shimamura, “Design of symmetric trisection filters for compact low-temperature co-fired ceramic realization,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 165–175, Jan. 2010.
[33] C.-W. Tang and H.-C. Hsu, “Development of multilayered bandpass filters with multiple transmission zeros using open-stub/short-stub/serial semilumped resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 624–634, Mar. 2010.
[34] T. Yang, M. Tamura, and T. Itoh, “Super compact low-temperature co-fired ceramic bandpass filters using the hybrid resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2896–2907, Nov. 2010.
[35] W. Shen, W.-Y. Yin, and X.-W. Sun, “Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 418–420, Aug. 2011.
[36] S. B. Yeap, Z. N. Chen, and X. Qing, “Gain-enhanced 60-GHz LTCC antenna array with open air cavities,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3470–3473, Sept. 2011.
[37] S.-H. Wi, Y. P. Zhang, H. Kim, I.-Y. Qh, and J.-G. Yook, “Integration of antenna and feeding network for compact UWB transceiver package,” IEEE Trans. Compon. Packag. Manuf. Tech., vol. 1, no. 1, pp. 111–118, Jan. 2011.
[38] A. Yatsenko, W. S. Wong, J. Heyen, M. Nalezinski, G. Sevskiy, M. Vossiek, and P. Heide, “System-in-Package solutions for WiMAX applications based on LTCC technology,” in Proc IEEE Radio and Wireless Symp., 2009, pp. 470–473.
[39] C. W. Byeon, J. J. Lee, H. Y. Kim, I. S. Song, S. J. Cho, K. C. Eun, I. Y. Oh, and C. S. Park, “A 60-GHz transceiver system with low-power CMOS OOK modulator and demodulator,” in IEEE MTT-S Int. Microw. Workshop Series, 2011, pp. 24–25.
[40] M. F. Karim, Y.-X. Guo, M. Sun, J. Brinkhoff, L. C. Ong, K. Kang, and F. Lin, “Integration of SiP-based 60-GHz 4 × 4 antenna array with CMOS OOK transmitter and LNA,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1869–1878, Jul. 2011.
[41] C.-L. Tsai and Y.-S. Lin, “Analysis and design of single-to-balanced combline bandpass filters with two independently controllable transmission zeros in LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2878–2887, Nov. 2010.
[42] M. Tamura, Y. Tao, and T. Itoh, “Very compact and low-profile LTCC unbalanced-to-balanced filters with hybrid resonators,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1925–1936, Aug. 2011.
[43] G.-S. Huang, C.-H. Wu, and C.-H. Chen, “LTCC balun bandpass filters using dual-response resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 483–485, Sept. 2011.
[44] S. P. Lim, S. J. Cheon, D. H. Bang and J.-Y. Park, “High-level embedded passive triplexer and quintplexer module into organic packaging substrate,” in Proc. Eur. Microw. Conf., 2008, pp. 1193–1196.
[45] K.-M. Kim and Y.-S. Kwon, “Ultra thin power amplifier module with embedded passives and actives on aluminum substrate,” in Proc. Eur. Microw. Conf., 2009, pp. 1361–1364.
[46] T. Kamgaing, E. Davies-Venn, and K. Radhakrishnan, “A compact 802.11 a/b/g/n WLAN front-end module using passives embedded in a flip-chip BGA organic package substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 213–216.
[47] J.-I. Ryu, S.-H. Park, D. Kim, and J.-C. Kim, “An embedded Wi-Fi front-end-module in printed-circuit-board by employing printed lines,” in Proc. Electron. Comp. Technol. Conf., 2011, pp. 1822–1827.
[48] V. S. Rao, V. N. Sekhar, S. W. Ho, R. Rajoo, G. Sharma, Y. Y. Lim, and P. Damaruganath, “Process and reliability of embedded micro-wafer-level package (EMWLP) using low cure temperature dielectric material,” IEEE Trans. Compon. Packag. Manuf. Tech., vol. 2, no. 1, pp. 13–22, Jan. 2012.
[49] H. Tanaka, T. Nagata, K. Yoshikawa, K. Shimizu, H. Noguchi, and S. Kato, “Embedded high-k thin film capacitor in organic package,” in Proc. Electron. Packag. Technol. Conf., 2008, pp. 988–993.
[50] C.-T. Chiu, B.-N. Lee, C.-H. Huang, T.-S. Horng, C.-P. Hung, and C.-C. Tu, “Design and implementation of embedded miniature bandpass filters for RF-System-in-Organic-Package applications,” in Proc. Electron. Comp. Technol. Conf., 2007, pp. 175–178.
[51] C.-H. Chen, C.-T. Chiu, C.-H. Huang, T.-S. Horng, B.-N. Lee, and C.-P. Hung, “Design of miniature bandpass filters on an organic laminate substrate using a modified T prototype,” in Proc. Eur. Microw. Conf., 2008, pp. 725–728.
[52] S.-H. Min, C.-S. Seo, A. M. Yepes, C. Ward, S. Dalmia, G. White, and M. Swaminathan, “RF design methodology for design-cycle-time reduction using parameterization of embedded passives on multilayer organic substrates,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 1397–1400.
[53] K. Kim, T. Kim, H. Kim, D. Lee, and Y. Sung, “Low cost embedded duplexer implementation for WiMAX front-end module with multi-layer organic substrate,” in Proc. Eur. Microw. Conf., 2008, pp. 32–35.
[54] T. C. Lee and J. Y. Park, “Compact PCB embedded tunable filter for UHF TV broadcasting,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 505–508.
[55] S. P. Lim and J. Y. Park, “Fully embedded UWB filter into organic packaging substrate,” in Proc. Electron. Comp. Technol. Conf., 2009, pp. 1585–1589.
[56] C.-T. Chiu, B.-N. Lee, C.-H. Chen, Y.-H. Lin, Y.-S. Wu, Y.-T. Qu, and C.-J. Hsu, “Design and modeling methodology of embedded passives substrate in a compact wireless connectivity module,” in Proc. Electron. Comp. Technol. Conf., 2011, pp. 144–149.
[57] T.-C. Lee, S.-J. Cheon, and J.-Y. Park, “Ultracompact UHF tunable filter embedded into multilayered organic packaging substrate,” IEEE Trans. Compon. Packag. Manuf. Tech., vol. 2, no. 1, pp. 46–52, Jan. 2012.
[58] A. Flament, A. Frappe, A. Kaiser, B. Stefanelli, A. Cathelin, and H. Ezzeddine, “A 1.2 GHz semi-digital reconfigurable FIR bandpass filter with passive power combiner,” in Proc. Solid-State Circuits Conf., 2008, pp. 418–421.
[59] T. Joo, H. Lee, S. Shim, and S. Hong, “CMOS RF power amplifier for UHF stationary RFID reader,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 106–108, Feb. 2010.
[60] S. Shim and S. Hong, “A CMOS power amplifier with Integrated-Passive-Device spiral-shaped directional coupler for mobile UHF RFID reader,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2888–2897, Nov. 2011.
[61] Y.-C. Hsu, H.-K. Chiou, H.-K. Chen, T.-Y. Lin, D.-C. Chang, and J.-Z. Juang, “Low phase noise and low power consumption VCOs using CMOS and IPD technologies,” IEEE Trans. Compon. Packag. Manuf. Tech., vol. 1, no. 5, pp. 673–680, May 2011.
[62] D. Shariff, P. C. Marimuthu, K. Hsiao, L. Asoy, C. L. Yee, A. K. Oo, K. Buchanan, K. Crook, T. Wilby, and S. Burgess, “Integration of fine-pitched Through-Silicon Vias and Integrated Passive Devices,” in Proc. Electron. Comp. Technol. Conf., 2011, pp. 844–848.
[63] C.-H. Huang, T.-C. Wei, T.-S. Horng, J.-Y. Li, C.-C. Chen, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, “Design and modeling of planar transformer-based integrated passive devices for wireless applications,” in Proc. Electron. Comp. Technol. Conf., 2009, pp. 516–521.
[64] H.-T. Kim, K. Liu, R. C. Frye, Y.-T. Lee, G. Kim, and B. Ahn, “Design of compact power divider using integrated passive device (IPD) technology,” in Proc. Electron. Comp. Technol. Conf., 2009, pp. 1894–1899.
[65] R. C. Frye, R. Melville, G. Badakere, Y. Lin, and K. Liu, “Theory of compact narrow-band directional couplers and implementation in silicon IPD technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 993–996.
[66] Y.-T. Lee, K. Liu, R. C. Frye, H.-T. Kim, G. Kim, and B. Ahn, “High rejection low-pass-filter design using integrated passive device technology for chip-scale module package,” in Proc. Electron. Comp. Technol. Conf., 2010, pp. 2025–2030.
[67] E. D. W. Galal, H. Ezzeddine, S. Bila, and S. Verdeyme, “Three approaches for the realization of a Chebyshev cross-coupled UWB filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 23–28.
[68] R. C. Frye, K. Liu, and Y. Lin, “Three-stage bandpass filters implemented in silicon IPD technology using magnetic coupling between resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 783–786.
[69] K. Liu, Y.-T. Lee, H.-T. Kim, G. Kim, R. C. Frye, H. M. P. Pwint, and B. Ahn, “Die thickness effects in RF front-end module stack-die assemblies,” in Proc. Electron. Comp. Technol. Conf., 2010, pp. 1556–1561.
[70] K. Liu, R. C. Frye, and B. Ahn, “High rejection BPF for WiMAX applications from Silicon Integrated Passive Device technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 23–28.
[71] R. C. Frye, K. Liu, G. Badakere, and Y. Lin, “Design of optimal coupled-resonator baluns in silicon IPD technology,” in Proc. Electron. Comp. Technol. Conf., 2009, pp. 1900–1907.
[72] K. Liu, R. C. Frye, and R. Emigh, “Band-pass-filter with balun function from IPD technology,” in Proc. Electron. Comp. Technol. Conf., 2008, pp. 718–723.
[73] K. Liu, R. C. Frye, and R. Emigh, “Compact balanced band pass filter for 3.3GHz – 3.9GHz WiMAX applications,” in Proc. Electron. Comp. Technol. Conf., 2009, pp. 1599–1605.
[74] K.-Y. Chen, B.-X. Fang, and H.-H. Yeh, “IPD broadband balun design for GSM applications,” in Proc. Electrical Design of Advanced Packaging & Systems Symposium, 2010, pp. 1–4.
[75] C.-H. Chen, C.-H. Huang, and T.-S. Horng, “Integrated transformer-coupled balun bandpass filters with an optimal common-mode rejection ratio,” IEEE Trans. Compon. Packag. Manuf. Tech., vol. 2, no. 1, pp. 53–62, Jan. 2012.
[76] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
[77] R. W. Rhea, HF Filter Design and Computer Simulation. Tucker, Georgia: Noble Publishing, 1994.
[78] Q.-X. Chu and H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 431–439, Feb. 2008.
[79] E. Hanna, P. Jarry, E. Kerherve, and J. M. Pham, “Cross-coupled suspended stripline trisection bandpass filters with open-loop resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 42-46.
[80] Y.-M. Chen and S.-F. Chang, “A compact stepped-impedance pseudo-interdigital bandpass filter with controllable transmission zero and wide stopband range,” in Proc. Eur. Microw. Conf., 2009, pp. 783–786.
[81] C.-W. Tang, “Harmonic-suppression LTCC filter with the step-impedance quarter-wavelength open stub,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 617–624, Feb. 2004.
[82] Y.-S. Dai, Z.-H. Ye, B.-S. Li, D.-L. Lu, Y. You, G.-P. Qi, C.-Y. Wang, Z.-D. Song, and F. Wang, “A miniaturized and low insertion loss LTCC filter with two finite transmission zeros for Bluetooth application,” in IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components, 2008, pp. 132-134.
[83] Y.-S. Dai, H.-S. Zang, G.-P. Qi, D.-L. Lu, Z.-L. Tao, G.-X. Qian, and H. Wang, “LTCC bandpass filter for Bluetooth™ application with dual transmission zeros,” in Proc. International Conference on Microwave and Millimeter Wave Technology, 2008, pp. 284–286.
[84] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[85] D. Packiaraj, M. Ramesh, and A.-T. Kalghatgi, “Design of a tri-section folded SIR filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 317–319, May 2006.
[86] C.-H. Lee, C.-I. G. Hsu, and L.-Y. Chen, “Band-notched ultra-wideband bandpass filter design using combined modified quarter-wavelength tri-section stepped-impedance resonator,” IET Microw. Antennas Propag., vol. 3, no. 8, pp. 1232–1236, Dec. 2009.
[87] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964.
[88] C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, “Performance of a planar filter using a 0° feed structure,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362–2367, Oct. 2002.
[89] C.-F. Chang and S.-J. Chung, “Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2383–2388, Jul. 2005.
[90] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368–1382, Sep. 2000.
[91] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifier,” IEEE J. Solid-State Circuits, vol. 43, pp. 1064–1075, May 2008.
[92] C. C. Lim, K. S. Yeo, K. W. Chew, A. Cabuk, J.-M. Gu, S. F. Lim, C. C. Boon, and M. A. Do, “Fully symmetrical monolithic transformer (true 1:1) for silicon RFIC,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2301–2311, Oct. 2008.
[93] G.-A. Lee, M. A. Megahed, and F. De Flaviis, “Low-cost compact spiral inductor resonator filters for system-in-a-package,” IEEE Trans. Adv. Packag., vol. 28, no. 4, pp. 761–771, Nov. 2005.
[94] U.-M. Jow, Y.-J. Lai, C.-L. Weng, C.-S. Chen, and C.-S. Shyu, “Functional embedded RF circuits on multi-layer printed wiring board (PWB) process,” in Proc. 55th Electron. Comp. and Technol. Conf., 2005, pp. 1634-1641.
[95] S. J. Lee and J. Y. Park, “PCB embedded 2.4GHz compact bandpass filter with two finite transmission zeros,” in Proc. Asia-Pacific Microw. Conf., 2007, pp. 1–4.
[96] V. Sridharan, S. Min, V. Sundaram, V. Sukumaran, S. Hwang, H. Chan, F. Liu, C. Nopper, and R. Tummala, “Design and fabrication of bandpass filters in glass interposer with through-package-vias (TPV),” in Proc. 60th Electron. Comp. and Technol. Conf., 2010, pp. 530-535.
[97] R. C. Frye, K. Liu, G. Badakere, and L. Yaojian, “A hybrid coupled-resonator bandpass filter topology implemented on lossy semiconductor substrates,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1757–1760.
[98] K.-T. Chen and S.-J. Chung, “A novel compact balanced-to-unbalanced low-temperature co-fired ceramic bandpass filter with three coupled lines configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 7, pp. 1714–1720, Jul. 2008.
[99] Touchstone File Format Specification, Agilent Technologies, Inc., 2009.
[100] D. E. Bockelman and W. R. Eisenstadt, “Pure-mode network analyzer for on-wafer measurements of mixed-mode S-parameters of differential circuits,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1071–1077, Jul. 1997.
[101] A. Ferrero and M. Pirola, “Generalized mixed-mode S-parameters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 458–463, Jan. 2006.
[102] W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-Mode S-parameters. Boston: Artech House, 2006.
[103] S. Sakhnenko, D. Orlenko, K. Markov, and A. Yatsenko, “Low profile LTCC balanced filter based on a lumped elements balun for WiMAX applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 1111–1114.
[104] E.-Y. Jung and H.-Y. Hwang, “A balun-BPF using a dual mode ring resonator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 652–654, Sept. 2007.
[105] L. K. Yeung and K.-L. Wu, “An LTCC balanced-to-unbalanced extracted-pole bandpass filter with complex load,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1512–1518, Jun. 2006.
[106] C.-C. Chuang and C.-L. Wang, “Design of three-pole single-to-balanced bandpass filters,” in Proc. Eur. Microw. Conf., 2006, pp. 1193–1196.
[107] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2902–2912, Dec. 2008.
[108] M. Tamura, T. Ishizaki, and M. Hoft, “Design and analysis of vertical split ring resonator and its application to unbalanced–balanced filter,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 157–164, Jan. 2010.
[109] J. C. Park, J. Y. Park, and S. G. Yoon, “PCB embedded compact balanced filter with coupled LC resonators,” in Proc. 59th Electron. Comp. Technol. Conf., 2009, pp. 1977–1982.
[110] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Spiral transmission-line baluns for RF multichip module packages,” IEEE Trans. Adv. Packag., vol. 22, pp. 332–336, Aug. 1999.
[111] S. Xiao, O. Dupuis, D. Linten, G. Carchon, P. Soussan, S. Decoutere, D. R. Walter, and E. Beyne, “High-Q above-IC inductors using thin-film wafer-level packaging technology demonstrated on 90-nm RF-CMOS 5-GHz VCO and 24-GHz LNA,” IEEE Trans. Adv. Packag., vol. 29, no. 4, pp. 810–817, Nov. 2006.
[112] M. Chongcheawchamnan, C. Y. Ng, M.S. Aftanasar, I. D. Robertson and J. S. Minalgene, “A broadband CPW Marchand balun using a photoimagable multilayer thick-film process,” Electron. Lett., vol. 37, no. 20, pp. 1228–1229, Sep., 2001.
[113] Z. Wu and X. Li, “On-chip micromachined solenoid balun for RF-SOC applications,” Electron. Lett., vol. 45, no. 8, pp. 409–411, Apr., 2009.
[114] K.-Y. Chen, B.-X. Fang, and H.-H. Yeh, “IPD broadband balun design for GSM applications,” in IEEE Electrical Design of Advanced Packaging & Systems Symposium, 2010, pp. 1-4.
[115] S.-C. Tseng, C. Meng, C.-H. Chang, and G.-W. Huang, “SiGe HBT Gilbert downconverter with an integrated miniaturized Marchand balun for UWB applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 2141–2144.
[116] 28. Yeung, L. K. and K.-L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[117] Lin, K.-C., C.-F. Chang, M.-C. Wu, S.-J. Chung, “Dual-bandpass filters with serial configuration using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2321–2328, Jun. 2006.
[118] Joshi, H., W.-J. Chappell, “Dual-band lumped-element bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4169–4177, Dec. 2006.
[119] J. H. Park, S. J. Cheon, J. Y. Park, and J. T. Lim, “Ultra-compact dual-band WLAN filter using independent band stop resonators,” in Proc. 59th Electron. Comp. Technol. Conf., 2011, pp. 2096–2100
[120] K. W. Qian and X. H. Tang, “Compact dual-band semi-lumped bandpass filter with LTCC technology,” Electron. Lett., vol. 47, no. 13, pp. 755–757, Jun., 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code