Responsive image
博碩士論文 etd-0331111-120511 詳細資訊
Title page for etd-0331111-120511
論文名稱
Title
Bi0.9Pb0.1FeO3薄膜之鐵電性研究
Study of Bi0.9Pb0.1FeO3 Thin Film Ferroelectricity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-03-15
繳交日期
Date of Submission
2011-03-31
關鍵字
Keywords
鐵電性、鉍鐵氧、Bi0.9Pb0.1FeO3
Bi0.9Pb0.1FeO3, BiFeO3, Ferroelectricity
統計
Statistics
本論文已被瀏覽 5778 次,被下載 38
The thesis/dissertation has been browsed 5778 times, has been downloaded 38 times.
中文摘要
鉍鐵氧為近年來最受矚目的多鐵材料,由於能在室溫下同時展現鐵電性及反鐵磁性,具電磁交互作用,在自旋電子元件及多層態記憶體的發展上具有極大的應用潛力。然而鉍鐵氧呈嚴重的漏電流,因此,本論文利用摻雜10%鉛,使鉍鉛鐵氧薄膜減少於晶粒界析出雜質的特性,以壓電力顯微鏡研究壓電區及界面之變化。
薄膜製程部分乃是利用射頻磁控濺鍍法,於鈦酸鍶基板上先成長銣酸鍶導電薄膜,目的作為緩衝層與觀測壓電特性時之下電極,最後成長多鐵性材料-鉛摻雜鉍鐵氧薄膜。
量測部分主要則是利用原子力顯微術及壓電力顯微術,以避免大面積量測時漏電流的干擾。藉此觀測奈米尺度下的表面形貌及鐵電區影像,並討論改變量測設定係數對壓電響應訊號的影響,以及利用較佳之量測設定係數鉛摻雜鉍鐵氧薄膜在晶粒-晶粒界及鐵電區-鐵電界面中的壓電特性。
Abstract
In recent years, BiFeO3 (BFO) has attracted much attention due to that exhibits ferroelectric and antiferromagnetic properties at room temperature. It potentially develops the spintronics and multiple-state memories. BFO suffered from serious leakage, therefore the BFO discussed in this report has doped 10% Pb to reduce the leakage problem.
The thin films are synthesized by radio frequency (RF) sputtering technique. The conductive SrRuO3 (SRO) thin film is deposited on the SrTiO3 (STO) substrate as a buffer layer and bottom electrode for piezoelectric measurements and subsequently deposited the multiferroics- BFO thin film.
Atomic force microscopy (AFM) and piezoresponse force microscopy (PFM) are used to observe the morphologies and domain images in nanometer scale by different parameters and avoid the disturbance of leakage reasonably. The variations of piezoelectric properties through grain-grain boundary and domain-domain boundary are also studied in this report.
目次 Table of Contents
摘要 .............................................................................................................. I
Abstract ................................................................................................... II
致謝 ........................................................................................................ III
目錄 ......................................................................................................... V
圖目錄 ................................................................................................... VII
表目錄 ..................................................................................................... X
第一章 簡介 ......................................................................................... 1
第二章 基本理論 ................................................................................. 4
2-1 多鐵性材料特性 .......................................................................................... 4
2-1-1 多鐵材料中的常見結晶結構 ........................................................... 4
2-1-2 材料中的磁性 ................................................................................... 6
2-1-3 材料中的極化機制 ......................................................................... 12
2-1-4 材料中的鐵電性 ............................................................................. 15
2-1-5 材料中的壓電性 ............................................................................. 19
2-2 成長基板與薄膜材料特性 ........................................................................ 21
2-2-1 SrTiO3特性 ..................................................................................... 21
2-2-2 SrRuO3特性 .................................................................................... 22
2-2-3 BiFeO3特性 .................................................................................... 23
第三章 儀器介紹與實驗方法 ............................................................ 27
3-1 實驗儀器介紹 ............................................................................................ 27
3-1-1 射頻磁控濺鍍系統(RF sputtering system).............................. 27
3-1-2 原子力顯微鏡(Atomic force microscope, AFM) ........................... 29
3-1-3 壓電力顯微鏡(Piezoresponse force microscope, PFM) ................. 32
3-2 實驗方法 .................................................................................................... 38
3-2-1 SrTiO3/SrRuO3/Bi0.9Pb0.1FeO3薄膜成長 ....................................... 38
3-2-2 Bi0.9Pb0.1FeO3薄膜下電極製作 ..................................................... 42
3-2-3 壓電力顯微鏡量測 ......................................................................... 43
第四章 實驗結果與討論 .................................................................... 44
4-1 改變量測參數對PFM影像的影響 .......................................................... 44
4-1-1 交流電壓源頻率對PFM影像之影響 ........................................... 44
4-1-2 交流電壓源振幅對PFM影像之影響 ........................................... 51
4-2 改變量測參數對壓電響應(Piezoresponse)曲線的影響 ........................... 57
4-2-1 交流電壓源頻率對壓電響應曲線之影響 ..................................... 58
4-2-2 交流電壓源振幅對壓電響應曲線之影響 ..................................... 64
4-2-3 直流電壓源電壓對壓電響應曲線之影響 ..................................... 69
4-3 改變Bi0.9Pb0.1FeO3薄膜量測區域對壓電響應曲線的影響 .................... 74
第五章 結論 ....................................................................................... 77
參考文獻 ................................................................................................ XI
參考文獻 References
[1] R. Ramesh, and N. A. Spaldin, Nature Mater. 6, 21 (2007)
[2] G. A. Smolenskii, and I. Chupis, Sov. Phys. Usp. 25, 475 (1982)
[3] R. N. P. Choudhary, D. K. Pradhan, G. E. Bonilla, and R. S. Katiyar, J. Alloys Compd. 437, 220 (2007)
[4] V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, A. L. Kholkin, M. A. Sa, and Y. G. Pogorelov, Appl. Phys. Lett. 90, 242901 (2007)
[5] S. Ghosh, S. Dasgupta, A. Sen, and H. Sekhar, J. Am. Ceram. Soc. 88, 1349 (2005)
[6] S. V. Kalinin, and D. A. Bonnell, Nanoscale characteristation of ferroelectric materials : scanning probe microscopy approach, Ch. 1, 1 (2004)
[7] G. A. Smolenskii, A. I. Agranovskya, S. V. Isupov, and V. A. Isupov, Sov. Phys. Tech. Phys. 3, 1981 (1958)
[8] http://www.hikari.uni-bonn.de/research/multiferroics
[9] R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001)
[10] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982)
[11] Y. N. Venevtsev, V. V. Gagulin, and I. D. Zhitomirsky, Ferroelectrics 73, 221 (1987)
[12] M. Fukui, and T. Hirose, J. Phys. Soc. Jpn. 49, 1399 (1965)
[13] C. Kittel, Introduction to Solid State Physics, 8th ed (John Wiley & Sons, New York, 2005)
[14] W. D. Kingery , H. K. Bowen, and D. R. Uhlmann , Introduction to Ceramics (John Wiley & Sons, New York, 1976)
XII
[15] M. Barsoum, Fundamentals of Ceramics (McGraw Hill, New York, 1994)
[16] M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 2001)
[17] P. Curie and J. Curie, Comptes Rendus. 91, 294 (1880)
[18] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto and H. Koinuma, Science 266, 1540 (1994)
[19] D A Bonnell and J Garra, Rep. Prog. Phys. 71, 044501 (2008)
[20] R.J. Bouchard. and J. L. Gillson, Mat. Res. Bull. 7, 873 (1972)
[21] N.D. Zakharov, K.M. Satyalakshmi, G. Koren, D. Hesse, J. Mater. Res. 14, 4385 (1999)
[22] C. Michel, J. M. Moresu, G. D. Achenbechi, R. Gerson, W. J. Jame, Solid State Commun. 7, 701 (1969)
[23] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003)
[24] Benjamin Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B 69,064114 (2004)
[25] M. M. Kumar, V. R. Palker, K. Srinivas, and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)
[26] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G.
XIII
Liu, Appl. Phys. Lett. 84, 1731 (2004)
[27] J. R. Teague, R. G. erson, and W. J. James, Solid State Comm. 8, 1073 (1970)
[28] 國科會精密儀器中心委員會, 真空技術與應用, Ch. 13, 4 (全華科技圖書公司, 2004)
[29] Donald L. Smith, Thin-film deposition principles and practice ( McGraw-Hill Inc, 1995)
[30] 汪島軍, 馬仁宏, 陳亙佑, 蔡斯凱, 林建智, 原子力顯微鏡專利地圖及分析 (國科會科學技術資料中心, 2004)
[31] Seiko儀器說明, SPM原理簡介、應用與機台架構 (富智儀器有限公司, 2003)
[32] 黃宇寬, 碩士論文-壓電力顯微鏡的製作與量測, Ch. 2, 3 (國立高雄大學應用物理所, 2009)
[33] H. Birk, J. Glatz-Reichenbach, Li-Jie, E. Schreck, and K. Dransfeld, J. Vac. Sci. Technol. B 9, 1162 (1991)
[34] C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, U. Gosele, Appl. Phys. A 70, 261 (2000)
[35] R. Proksch, A. Research and S. Kalinin, Piezoresponse Force Microscopy with Asylum Research AFMs (Asylum Research)
[36] C. Harnagea, Ph.D. thesis - Local piezoelectric response and domain structures in ferroelectric thin films investigated by voltage-modulated force microscopy (Mathematisch – Naturwissenschaftlich – Technischen Fakultät, Martin – Luther –
XIV
Universität Halle Wittenberg, 2001)
[37] C. Harnagea, and A. Pignolet, Nanoscale characteristation of ferroelectric materials : scanning probe microscopy approach, Ch. 2, 4 (2004)
[38] S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev, P. Muralt, K. No, and N. Setter, J. Appl. Phys. 86, 607 (1999)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.124.142
論文開放下載的時間是 校外不公開

Your IP address is 3.144.124.142
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code