Responsive image
博碩士論文 etd-0411115-162632 詳細資訊
Title page for etd-0411115-162632
論文名稱
Title
應用於毫米波鎊線封裝之寬頻互連結構設計
Design of Broadband Interconnects for Millimeter-Wave Wirebond Package Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-02-12
繳交日期
Date of Submission
2015-05-11
關鍵字
Keywords
毫米波封裝、缺陷接地結構、四方扁平無接腳封裝、不連續補償、帶狀鎊線
millimeter-wave package, defected ground structure (DGS), QFN package, discontinuity compensation, Ribbon wire-bonding
統計
Statistics
本論文已被瀏覽 5917 次,被下載 170
The thesis/dissertation has been browsed 5917 times, has been downloaded 170 times.
中文摘要
現今許多無線通訊的應用已將元件操作頻率推升至毫米波段,因此對封裝結構的選用更是關鍵。本論文致力於研究低成本寬頻四方扁平無接腳封裝結構,以能實現晶片、封裝和基板至毫米波段的共模擬。基於上述思維,本論文提出兩種方法。首先,藉由砷化鎵的背穿孔以及鎊線連接來形成兩接地路徑並聯,為了比較特性,將圓形鎊線及帶狀鎊線分別實現在有塑膠灌模之四方扁平無接腳封裝。同時,為了得到精確的鎊線電性特性,去嵌化的流程也被建立。其次,將缺陷接地結構應用於四方扁平無接腳封裝,此乃是文獻中首度提出利用缺陷接地結構本身的電感性來補償封裝轉接介面先天上之電容性。除此之外,本論文在共設計上亦考慮了用來保護晶片之塑膠灌模效應。值得一提的是,此缺陷接地結構是在四方扁平無接腳封裝外部實現,因此不用修改封裝原先的設計。所以,此技術可以廣泛地應用於其他四方扁平無接腳封裝或擁有相似接腳的鎊線封裝上。最後,此缺陷接地結構的開口有助於阻抗匹配並能降低植入損耗,因而提升了操作頻率的範圍到達E頻帶。藉由小心的設計,本論文的模擬結果與量測結果皆具有良好的吻合度。
Abstract
Nowadays many wireless communication applications have pushed device operation frequency into millimeter-wave range. For this reason, the selection of a package is critical. The dissertation aims to investigate a low-cost wideband QFN package for realizing chip-package-board co-simulation up to millimeter-wave frequencies. The dissertation addresses two approaches for this purpose. Firstly, the QFN package uses two ground paths in parallel with the help of backside via of GaAs chip and wire-bonding connection. The performance comparison is made between round bond-wires and ribbon bond-wires for the package with a plastic molding. To obtain the accuracy performance of wire-bonding transition, a de-embedding process is established. Secondly, a defected ground structure (DGS) is studied for application to the QFN package. The technique of using high-impedance DGS with an inductive characteristic was presented for the first time to compensate for the packaging transition that has a capacitive nature. Moreover, the chip-package co-design considers the effects of the necessary plastic molding for chip protection. It is worth to mention that the DGS was implemented externally to the QFN package, so there is no need to alter the design of the QFN package. The proposed technique can thus be widely applied to many other QFN packages or wirebond packages with similar lead configurations. Finally, the DGS opening helps to improve impedance matching and reduces the insertion loss, thus further extending the range of operating frequencies to E band. Through the careful design, the simulation results agree with measurement results quite well in this dissertation.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Millimeter Wave Applications and Packaging-related Challenges 2
1.3 Chip-to-Package Structures at Millimeter-Wave Frequencies 5
1.3.1 Millimeter-wave Interconnect Technologies 5
1.3.2 Millimeter-wave Leadless Package Structures 8
1.4 Objectives and Organization of Dissertation 10
2 Performance Improvement for Chip-Package-Board Co-Design 12
2.1 Introduction 12
2.2 Package Structure Selection 14
2.3 Two Ground Paths in parallel Technique 16
2.3.1 Improving Current Return Paths in Package Structure 16
2.3.2 Characteristics of Round and Ribbon Bond-wires 21
2.3.3 Performance Comparison of Various Wirebond Transitions 26
2.3.4 Simulation and Experimental Results 28
2.4 On Chip and PCB Board De-Embedding Processes 30
2.4.1 Through-Line-Line (TLL) Calibration 32
2.5 Summary 33
3 Defected Ground Structure (DGS) Design for Bandwidth Extension 35
3.1 Introduction 35
3.2 Analysis and Design DGS 36
3.2.1 Characteristics of the Defected Ground Transmission Line 36
3.3 Chip-Package-Board Co-Design 40
3.3.1 Effects of Wideband DGS on QFN package structure 40
3.4 Co-Simulated and Measured Results 46
3.5 Summary 50
4 Conclusions 51
Bibliography 53
Vita 61
參考文獻 References
[1] A. Osserian, F. Boccardi, V. Braun, and M.Fall, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag., vol. 52, no. 5, pp. 26–35, May 2014.
[2] S. Chen, and J. Zhao, “The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication,”IEEE Commun. Mag., vol. 52, no. 5, pp. 36–43, May 2014.
[3] J. Hasch, E. Topak, R. Schnabel, R. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 845–860, March 2012.
[4] J. Mitola, “A 77-GHz CMOS automotive radar transceiver with anti-interference function,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, no. 12, pp. 26–38, Dec. 2013.
[5] R. Abou-Jaoude, “ACC radar sensor technology, test requirements, and test solutions,” IEEE Trans. Intell. Transport. Syst., vol. 4, no. 3, pp.115–122, Sept. 2003.
[6] G. P. Fettweis and E. Zimmermann, “ICT energy consumption – trends and challenges,” in Proc. 11th Int. Wireless Personal Multimedia Communications Symp., Lapland, Finland, Sep. 2008, pp. 1–3.
[7] A. D. Oliver, “Millimeter wave systems - past, present and future,” in IEE Proc. Radar and Signal Processing, Feb. 1989, pp. 35–52.
[8] J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Micro. Mag., vol. 10, no. 3, pp. 104–112, May 2009.
[9] C. Park, and T. S. Rappaport, “Short-Range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun., vol. 14, no. 4, pp. 70–78, Aug. 2007.
[10] L. Wang, S. Glisic, J. Borngraeber, W. Winkler, and J. Scheytt, “A single-ended fully integrated SiGe 77/79 GHz receiver for automotive radar,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1897–1908, Sept. 2008.
[11] J. Lee, Y. A. Li, M. H. Hung, and S. J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
[12] J. Borremans, G. Mandal, V. Giannini, B. Debaillie, M. Ingels, T. Sano, B. Verbruggen, and J. Craninckx, “A CMOS 77-GHz receiver front-end for automotive radar,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1659–1671, Jul. 2011.
[13] M. Elkashlan, T. Q. Duong, and H. H. Chen, “Millimeter-wave communications for 5G: fundamentals: Part I,” IEEE Commun. Mag., vol. 52, no. 9, pp. 26–35, Sept. 2014.
[14] T. S. Rappaport, S. Sun, R. Mayzus, Z. Hang, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Futierrez, “Millimeter wave mobile communications for 5G cellular: it will work!,” IEEE Access, vol. 1, pp. 335–349, May 2013.
[15] L. HyeonWoo, “4G and B4G R&D activities in Korea,” in Proc. Int. Mobile Commun. Symp., Sept. 2012, pp. 1–6.
[16] F.-Y. Han, J.-M. Wu, T.-S. Horng, and C.-C. Tu, “A rigorous study of package and PCB effects on W-CDMA upconverter RFICs, ” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3793–3804, Oct. 2006.
[17] J.-M. Wu, F.-Y. Han, T.-S. Horng, and J. Lin, “Direct-conversion quadrature modulator MMIC design with a new 90 degrees phase shifter including package and PCB effects for W-CDMA applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2691-2698, Jun. 2006.
[18] M. Cudak, A. Ghosh, T. Kovarik, R. Ratasuk, T. A. Thomas, F. W. Vook, and P. Moorut, “Moving towards mmwave-based beyond-4G (B-4G) technology,” in Proc. IEEE Vech. Conf., June 2013, pp. 1–5.
[19] A. A. O. Tay, K. S. Yeo, and J. H. Wu, “The effect of wirebond geometry and die setting on wire sweep,” IEEE Trans. Adv. Packag., vol. 18, no.1, pp. 201–209, Feb. 1995.
[20] M. Yamagata, and H. Hashemi, “A differential X/Ku-band low noise amplifier in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 888–890, Dec. 2007.
[21] A. Chandrasekhar, S. Stoukatch, S. Brebels, J. Balachandran, E. Beyne, W. De Raedt, B. Nauwelaers, and A. Poddar, “Characterisation, modelling and design of bond-wire interconnects for chip-package co-design,” in Proc. IEEE Europe Micro. Conf., Oct. 2003, pp. 301–304.
[22] C. H. J, Poh, C. E. Patterson, S. K. Bhattacharya, S. D. Philips, N.E. Lourenco , J. D. Cressler, and J. Papapolymerou, “Packaging effects of multiple X-Band SiGe LNAs embedded in an organic LCP substrate,” IEEE Trans. Compon. Packag. Manuf. Technol, vol. 2, no. 8, pp. 1351-1360, Aug. 2012.
[23] J. R. Cubillo, J. Gaubert, S. Bourdel and H. Barthelemy, “RF low-pass design guiding rules to improve PCB to die transition applied to different types of low-cost packages,” IEEE Trans. Adv. Packag., vol. 31, no. 3, pp. 527-535, Aug. 2008.
[24] T.-S. Horng, S.-M. Wu, and C. Shih, “Complete methodology for electrical modeling of RFIC packages,” IEEE Trans. Adv. Packag., vol. 24, no. 4, pp. 542-547, Nov. 2001.
[25] K. D. Gun and K. Joungho, “40-Gb/s package design using wire-bonded plastic ball grid array,” IEEE Trans. Adv. Packag., vol. 31, no. 2, pp. 258-266, May 2008.
[26] J. J. Lee, and C. S. Park, “A slow-wave microstrip line with a high-Q and a high dielectric constant for millimeter-wave CMOS application,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 381–383, July 2010.
[27] F. Taringou, D. Dousset, J. Bornrmann, and K. Wu, “Broadband CPW feed for millimeter-wave SIW-based antipodal linearly tapered slot antennas,” IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 1756-1762, April. 2013.
[28] K. Wu, Y. J. Cheng, T. Djerafi, and W. Hong, “Substrate-Integrated millimeter-wave and terahertz antenna technology,” IEEE Proc., vol. 100, no. 7, pp. 2219–2232, July 2012.
[29] F. Xu, Y. Zhang, W. Hong, K. Wu, and T. J. Cui, “Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2221–2227, Nov. 2003.
[30] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68–70, Feb. 2001.
[31] P. Marco, B. Maurizio, and P. Luca, “A formula for radiation loss in substrate integrated waveguide,” IEEE Trans. Microw. Theory and Techn., vol. 62, no. 10, pp. 2205-2213, Oct. 2014.
[32] W.-C. Wu, Y.-E. Chang, R.-B. Hwang, L.-H. Hsu, C.-H. Huang, C. Karnfelt, and H. Zirath, “Design, fabrication, and characterization of novel vertical coaxial transitions for flip-chip interconnects”, IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 362-371, May 2009.
[33] P. Garrou, C. Bower, and P. Ramm, Handbook of 3D integration: technology and applications of 3D integrated circuits. Weiheim, Germany: Wiley-VCH, 2008.
[34] H. J. Timme, K. Pressel, G. Beer, and R. Bergmann, “Interconnect technologies for system-in-package integration,” in Proc. IEEE Elect. Packag. and Tech. Conf., Dec. 2013, pp. 641–646.
[35] A. Jentzsch and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 871–878, May 2001.
[36] D. Staiculescu, J. Laskar, and E. M. Tentzeris, “Design rule development for microwave flip-chip applications,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1476–1481, Sep. 2000.
[37] S. Hu, L. Wang, Y. Z. Xiong, T. G. Lim, B. Zhang, J. Shi, and X. Yuan, “TSV technology for millimeter-wave and terahertz design and applications,” IEEE Trans. Compon. Packag. Manuf. Technol, vol. 1, no. 2, pp. 260–207, Feb. 2011.
[38] G. V. Plas, P. Limaye, and A. Mercha, “Design issues and considerations for low-cost 3D TSV IC technology,” in Proc. IEEE Int. Solide-State Circuits Conf. Dig., Feb. 2010, pp. 148–150.
[39] T.-S. Horng, S.-M. Wu, H.-H. Hwang, C.-T. Chiu, and C.-P. Hung, “Modeling of lead-frame plastic CSPs for accurate prediction of their low-pass filter effects on RFICs,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1538–1545, Sep. 2001.
[40] R. Scheuenpflug, R. Schwarz, and K. Pressel, “From physics to innovation: the growing impact of packaging,” in Proc. IEEE European Micro. Packag. Conf., June 2003, pp. 370–375.
[41] A. Tseng, M. Lin, B. Hu, J.-W. Chen, J.-M. Wan, S. Lee, Y.-S. Lai, “Advanced QFN surface mount application notes development,” in Proc. IEEE Electron. Packag. Technol. Conf., Dec. 2010, pp. 737–742.
[42] L. Wu, Q. Rong, and X. Sun, “A high performance plastic air-cavity QFN solution for future potential microwave package large scale application,” in Proc. IEEE Electric. Design. Adv. System Symp., Dec. 2009, pp. 1–4.
[43] T. Zwick, and S. Beer, “QFN based packaging concepts for millimeter-wave transceivers”, in IEEE Int. Workshop on Ant. Tech., March 2007, pp. 335–338.
[44] M. J. Chen, and S. A. Tabatabaei, “Broadband, thin-film, liquid crystal polymer air cavity quad flat no-lead (QFN) package,” in Proc. IEEE Comp. Semicon. Integrated Circu. Sym., Oct. 2009, pp. 1–4.
[45] Y. H. Suh, D. Richardson, A. Dadello, S. Mahon, J. T. Harvey, “A Low-Cost high performance GaAs MMIC package using air-cavity ceramic quad flat non-leaded package up to 40 GHz,” in Proc. IEEE European Micro. Packag. Conf., Oct. 2005, pp. 370–375.
[46] T.-S. Horng, S.-M. Wu, C.-T. Chiu, and C.-P. Hung, “Electrical performance improvements on RFICs using bump chip carrier packages as compared to standard thin shrink small outline packages,” IEEE Trans. Adv. Packag., vol. 24, no. 4, pp. 548-554, Nov. 2001.
[47] D. Jessie, and L. E. Larson, “An X-band small outline leaded plastic package for MMIC applications,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 439-447, Aug. 2002.
[48] A. Chandrasekhar, E. Beyne, W. De Raedt, and B. Nauwelaers, “Accurate RF electrical characterization of csps using MCM-D thin film technology,” IEEE Trans. Adv. Packag., vol. 27, no. 1, pp. 203–212, Feb. 2004.
[49] F.-S. Lee, and A. P. Chandrakasan, “A BiCMOS ultra-wideband 3,1-10,6 GHz front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1784–1791, Aug. 2006.
[50] C.-H. Li, C.-L. Ko, C.-N. Kuo, M.-C. Kuo and D.-C. Chang, “A low-cost DC-to-84-GHz broadband bondwire interconnect for SoP heterogeneous system integration,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 1-8, Sep. 2013.
[51] E. A. Sanjuan and S. S. Cahill, “QFN-based millimeter wave packaging to 80GHz,” in Proc. IEEE Int. Microw. Workshop Series, Feb. 2009, pp. 9-12.
[52] G. Liu, A. Trasser, A. Ulusoy, and H. Schumacher, “Low-loss, low-cost, IC-to-board bondwire interconnects for millimeter-wave applications,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 1–4.
[53] E. Bogatin, Signal integrity—simplified. Englewood Cliffs, NJ, USA: Prentice-Hall, Sep. 2007.
[54] S.-K. Yun and H.-Y. Lee, “Parasitic impedance analysis of double bonding wire for high frequency integrated circuits packaging,” IEEE Microwave Guided Wave Lett., vol. 5, no. 9, pp. 296-298, Sep. 1995.
[55] S. H. Hall, G. W. Hall and J. A. Mccall, High-speed digital system design—A handbook of interconnect theory and design practices. John Wiley, Aug. 2000.
[56] A. C. W. Lu, W. Fan, L. L. Wai, L. A. Low, F. X. Ke, K. C. Yip, and Y. P. Lim, “Modeling and characterization of wire bonding for RF applications,” in Proc. IEEE Electron. Compon. Technol. Conf., May 2002, pp. 905–909.
[57] Y.-C. Lin, W.-H. Lee, T.-S. Horng, and L.-T. Hwang, “Full chip-package-board co-design of broadband QFN bonding transition using backside via and defected ground structure,” IEEE Trans. Compon. Packag. Technol., vol. 4, no. 9, pp. 1470-1479, Sep. 2014.
[58] J. E. Zunuga-Juarez, J. A. Reynoso-Hernandez, J. A. , and J. R. Loo- Yau, “Two-tier L-L De-embedding method for S-parameters measurements of devices mounted in test fixture,” in Proc. IEEE Micro. Measure. Conf., June 2009, pp. 1–5.
[59] K. Narita, and T. Kushta, “An accurate experimental method for characterizing transmission lines embedded in multilayer printed circuits boards,” IEEE Trans. Adv. Packag., vol. 29, no. 1, pp. 114-121, Feb. 2006.
[60] Engen, G.,and C, Hoe, “Thru-reflect-line: an improved technique for calibrating the dual six-port automatic network analyzer, ” IEEE Trans. Microw. Theory Tech., vol. 27, no. 12, pp. 987–993, Dec. 1979.
[61] L. Hongwei, J. Laskar, and H. Mike, “A broad band through-line-line de-embedding technique for BGA package measurements,” in Proc. IEEE Electri. Perform. Electri. Pack., Oct. 2001, pp. 125–128.
[62] L. Hongwei, J. Laskar, H. Mike, and P. Ram, “A novel de-embedding technique for millimeter-wave package characterization,” in IEEE ARFTG Conf. Dig., Dec. 2000, pp. 1–8.
[63] Y.-C. Lin, Y.-C. Lin, T.-S. Horng, L.-T. Hwang, C. T. Chiu, and C. P. Hung, “Low cost QFN package design for millimeter-wave applications,” in Proc. IEEE Electron. Compon. Technol. Conf., Jun. 2012, pp. 915–919.
[64] Y.-C. Lin, W.-S. Li, T.-S. Horng, and L.-T. Hwang, “High performance plastic molded QFN package with ribbon bonding and a defective PCB ground”, in Proc. IEEE Electron. Comp. Technol. Conf., May 2013, pp. 1644-1649.
[65] J. J. Koo, S. Oh, M. S. Hwang, C. Park, Y. Jeong, J. Lim, K. S. Choi and D. Ahn, “A new DGS unequal power divider,” in Proc. IEEE Europe Micro. Conf., Oct. 2007, pp. 556–559.
[66] Y. Changjiang and Z. Xiaowei, “A novel planar dual-band branch line coupler using defect ground structure,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2008, pp. 1227–1230.
[67] J. S. Lim, C. S. Kim, S. Ahn, J. Y. Chae and S. Kim, “Design of low-pass filters using defected ground structure,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2539–2545, Aug. 2005.
[68] A. B. Abdel-Rahman, A. K. Verma, Boutejdar, and A. S. Omar, “Control of bandstop response of Hi-Lo microstrip low-pass filter using slot in ground plane,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1008–1013, March 2004.
[69] N. M. Garmjani, and N. Komjani, “Quasi-elliptic SIR bandpass filter with defected ground structure,” in Proc. IEEE Asia Pacific Microwave Conference., Dec 2009, pp. 2534–2537.
[70] X. Luo, J. G. Ma, and E. P. Li, “Hybrid microstrip/DGS cell for filter design,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 528–530, Oct. 2011.
[71] J.S. Lim, C.S. Kim, D. Ahn, Y.C. Jeong and S. Nam, “Design of lowpass filters using defected ground structure,” IEEE Trans. Microw. Theory Tech., vol. 21, no. 10, pp. 528–530, Oct. 2011.
[72] C. Fu, C. Ko, C. Kuo, and Y. Juang, “Improvement in performance of power amplifier using defected ground structure,” IEICE Trans. Electron., vol. 87, no. 1, pp. 52–59, Jan. 2008.
[73] J.-S. Lim, G.-Y. Lee, Y.-C. Jeong, D. Ahn, and K.-S.Choi, “A 1:6 unequal Wilkison power dividers,” in Proc. IEEE Europe Micro. Conf., Sept. 2006, pp. 200–203.
[74] G. Chaudhary, Y. Jeong, J. Lim, C. D. Kim, D. Kim, J. C. Kim, and J. C. Park, “DMS harmonic termination load network for high efficiency power amplifier applications,” in Proc. IEEE Europe Micro. Conf., Sept. 2010, pp. 946–949.
[75] X. Luo, J. G. Ma, E. P. Li, and K. Ma, “Hybrid microstrip t-Stub/defected ground structure cell for electromagnetic interference bandpass filter design,” IEEE Trans. Electro. Compa., vol. 53, no. 3, pp. 717–725, Aug. 2011.
[76] C. Kumar, and D. Guha, “Defected ground structure (DGS)-integrated rectangular microstrip patch for improved polarisation purity with wide impedance bandwidth,” IET Microw. Ant. Propa., vol. 8, no. 8, pp. 589–596, June 2014.
[77] D. A. Frickey, “Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 2, pp. 205–211, Aug. 2002.
[78] N.K. Das, S.M. Voda, and D.M. Pozar, “Two methods for the measurement of substrate dielectric constant,” IEEE Trans. Microw. Theory Tech., vol. 35, no. 7, pp. 636–642, July 1987.
[79] A. M. Mangan, S. P. Voinigescu, M. T. Yang and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Trans. Electron Device, vol. 53, no.2, pp. 235-241, Feb. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code