論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
溫度對雪山草蜥(Takydromus hsuehshanensis)胚胎發育之影響 Temperature effects on embryonic development of Takydromus hsuehshanensis |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
104 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-06-17 |
繳交日期 Date of Submission |
2021-05-11 |
關鍵字 Keywords |
爬行動物、胚胎生理、高海拔、巢位、降雨、生物物理模式 reptile, embryonic physiology, high elevation, nesting site, rainfall, Niche Mapper |
||
統計 Statistics |
本論文已被瀏覽 122 次,被下載 0 次 The thesis/dissertation has been browsed 122 times, has been downloaded 0 times. |
中文摘要 |
環境溫度會影響外溫動物生理機能與行為,進而影響其生態表現及地理分布範圍。作為外溫動物,爬蟲類對於溫度變化更為敏感,尤其是在生活史的早期階段。在高海拔寒冷氣候地區,卵生蜥蜴必須在短暫的活動季節內完成胚胎發育,因此雌蜥的巢位選擇會影響胚胎發育、幼體成長及度冬前的能量累積。雪山草蜥(Takydromus hsuehshanensis)為臺灣高海拔特有種蜥蜴(海拔分布1800-3500公尺),常見於開闊的草原及碎石地環境。目前已知成體可用日曬方式提高體溫來適應高海拔氣候,但針對胚胎時期溫度生理的相關研究較少。本實驗目的是檢測溫度對雪山草蜥胚胎發育之影響,並透過生物物理模式估算植被對巢位溫度的影響。此外,也初步測量溫度對幼蜥度冬行為及能量花費之影響。結果顯示:(一)本研究建立的數學模式可利用孵化溫度來預測胚胎發育時間。(二)在模擬條件下,高海拔地區的胚胎只能在開闊有日照的環境下完成發育,森林的鬱閉度提高會造成底層的溫度太低,使胚胎無法在入冬前完成發育。(三)幼蜥的活動能力及標準代謝率隨溫度下降而降低。由以上結果推論,雪山草蜥依賴母蜥透過選擇溫暖的開闊碎石地或草原產蛋,使胚胎在冬季前孵化來適應高海拔環境。另外,推測低溫條件可以減少幼蜥的能量消耗,有利於度冬。本研究可作為未來研究氣候變遷或棲地改變如何影響高山爬蟲類之參考。 |
Abstract |
Environmental temperature affects ectotherms’ physiological functions, behavior, and ultimately, their ecological performance and distributional range. As ecototherms, reptiles are sensitive to temperature changes, particularly in the early life stages. In cold-climate areas, such as high elevation, oviparous (egg-laying) lizards have to complete embryonic development within a short activity season. Females’ nest selection therefore has adaptive significance for embryo development, hatchling growth and energy accumulation before winter arrival. Takydromus hsuehshanensis, a high-elevation lizard (1800–3500 m elevation) endemic of Taiwan, is commonly found in grasslands. To adapt to cold climates, the adults of this species adopt basking behavior to raise their body temperatures, but little is known on the thermal physiology of early-life stages. The purpose of this study was to investigate the effect of temperature on the embryonic development of T. hsuehshanensis, and to use a biophysical model to estimate how vegetation canopy can affect the suitability of surface for nesting. I also preliminarily measured the temperature sensitivity of the hatchlings’ behavior and standard metabolic rate in the winter. The results indicated: (1) the embryonic development time can be predicted from the developmental temperature using mathematical models. (2) In the simulated conditions, at high elevation, embryos can only complete development before winter arrival in open sites, and increase of forest canopy will lead to surface too cold for embryonic development. (3) The hatchlings’ activity and standard metabolic rate decrease with decreasing temperatures. These results suggest that increase the possibility of hatching success depend on females’ nest selection and that staying at low temperature can save juveniles’ energy and benefit overwinter. This study provides valuable insights for future research, furthering the investigation of the impact of environmental change on alpine reptiles. |
目次 Table of Contents |
誌謝 i 摘要 ii Abstract iii 目錄 iv 圖表目錄 v 附錄目錄 vi 壹、 前言 1 貳、 研究方法 5 實驗一、溫度對胚胎發育之影響 5 實驗二、巢位溫度及野外棲地溫度 9 實驗三、溫度對幼蜥渡冬之影響 13 統計分析 15 參、 結果 17 實驗一、溫度對胚胎發育之影響 17 實驗二、巢位溫度及野外棲地溫度 19 實驗三、溫度對幼蜥渡冬之影響 23 肆、 討論 25 伍、 參考文獻 33 附錄一、雪山草蜥野外巢位照片以及溫度歷程 S1 附錄二、微氣候模式參數設定與驗證 S11 附錄三、DEVARA胚胎發育模式參數設定與驗證 S19 附錄四、微氣候模式輸入範例 S22 附錄五、DEVARA胚胎發育模式輸入與輸出範例 S24 |
參考文獻 References |
向高世、楊懿如、李鵬翔。2009。台灣兩棲爬行類圖鑑。貓頭鷹出版社。臺北市。 江秀真。2017。臺灣高山地區霧雨雪之水象特色。國立臺灣大學大氣科學研究所。碩士論文。臺北市。 陳藝暉。2007。由溫度對胚胎及幼體的影響探討雪山草蜥(Takydromus hsuehshanensis)的海拔分布。國立臺灣師範大學生命科學系。碩士論文。臺北市。 Alberts, A. C., Perry, A. M., Lemm, J. M., Phillips, J. A. (1997). Effects of incubation temperature and water potential ongrowth and thermoregulatory behavior of hatchling Cuban rock iguanas (Cyclura nubila). Copeia, 1997: 766-776. Allsteadt, J., Lang, J. W. (1995). Incubation temperature affects body size and energy reserves of hatchling American alligators (Alligator mississippiensis). Physiological Zoology, 68: 76-97. Andrewartha, H. G., Birch, L. C. (1954). The distribution and abundance of animals. The University of Chicago Press, Chicago. Andrewartha, S. J., Mitchell, N. J., Frappell, P. B. (2010). Does incubation temperature fluctuation influence hatchling phenotypes in reptiles? A test using parthenogenetic geckos. Physiological and Biochemical Zoology, 83: 597-607. Andrews, R. M., Qualls, C. P., Rose, B. R. (1997). Effects of low temperature on embryonic development of Sceloporus lizards. Copeia, 1997: 827-833. Angilletta Jr, M. J., Sears, M. W., Pringle, R. M. (2009). Spatial dynamics of nesting behavior: lizards shift microhabitats to construct nests with beneficial thermal properties. Ecology, 90: 2933-2939. Bartelt P., Klaver, R. W., Porter, W. P. (2010). Modeling amphibian energetics, habitat suitability, and movements of western toads (Anaxyrus boreas) across present and future landscapes. Ecological Modelling, 221: 2675-2686. Battisti, A., Cescatti, A. (1994). Temperature-dependentgrowth model for eggs and larvae of Cephalcia arvensis (Hymenoptera: Pamphiliidae). Environmental entomology, 23: 805-811. Beckman, W., Mitchell, J. W., Porter, W. P. (1973). Thermal model for prediction of a desert iguana’s daily and seasonal behavior. Journal of Heat Transfer, 95: 257-262. Booth, D. T. (2018). Incubation temperature induced phenotypic plasticity in oviparous reptiles: Where to next? Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329: 343-350. Brischoux, F., Dupoué, A., Lourdais, O., Angelier, F. (2016). Effects of mild wintering conditions on body mass and corticosterone levels in a temperate reptile, the aspic viper (Vipera aspis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192: 52-56. Campbell, J. A. (1992). The distribution, variation, and natural history of the Middle American montane pitviper, Porthidiumgodmani. Biology of the Pitvipers, 223-250. Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brosofske, K. D., Mroz, G. D., Brookshire, B. L., Franklin, J. F. (1999). Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience, 49: 288-297. Chen, Y. H., Tu, M. C., Huang, S. P. (2013). Synergistic limits to the altitudinal distribution of a high-altitude lizard, Takydromus hsuehshanensis. Zoological Science, 30: 15-20. Dallwitz, M., Higgins, J. (1992). User'sguide to DEVAR. A computer program for estimating development rate as a function of temperature. CISRO Division of Entomology Report No. 2: 1-23. Damme, R. V., Bauwens, D., Braña, F., Verheyen, R. F. (1992). Incubation temperature differentially affects hatching time, egg survival, and hatchling performance in the lizard Podarcis muralis. Herpetologica, 220-228. Deeming, D. C. (2004). Reptilian incubation: environment, evolution and behavior. Nottingham University Press. Nottingham. Desai, M., Hales, C. N. (1997). Role of fetal and infantgrowth in programming metabolism in later life. Biological Reviews, 72: 329-348. Du, W. G., Shine, R. (2010). Why do the eggs of lizards (Bassiana duperreyi: Scincidae) hatch sooner if incubated at fluctuating rather than constant temperatures? Biological Journal of the Linnean Society, 101: 642-650. Du, W. G., Ji, X. (2006). Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northerngrass lizard (Takydromus septentrionalis, Lacertidae) Journal of Experimental Zoology Part A: Comparative Experimental Biology, 305: 47-54. Ferguson, G. W., Fox, S. F. (1984). Annual variation of survival advantage of large juvenile side‐blotched lizards, Uta stansburiana: its causes and evolutionary significance. Evolution, 38: 342-349. Fuentes, M., Porter, W. P. (2013). Using a microclimate model to evaluate impacts of climate change on sea turtles. Ecological Modelling, 251: 150-157. Gaston, K. J. (2003). The structure and dynamics ofgeographic ranges. Oxford University Press, Oxford. Georges, A., Beggs, K., Young, J. E., Doody, J. S. (2005). Modelling development of reptile embryos under fluctuating temperature regimes. Physiological and Biochemical Zoology, 78: 18-30. Hagstrum, D. W., Hagstrum, W. R. (1970). A simple device for producing fluctuating temperatures, with an evaluation of the ecological significance of fluctuating temperatures. Annals of the Entomological Society of America, 63: 1385-1389. Hagstrum, D. W., Milliken, G. A. (1991). Modeling differences in insect developmental times between constant and fluctuating temperatures. Annals of the Entomological Society of America, 84: 369-379. Hertz, P. E., Huey, R. B., Nevo, E. (1982). Fight versus flight: body temperature influences defensive responses of lizards. Animal Behaviour, 30: 676-679. Hsu, H. H., Chen, C. T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79: 87-104. Huang, S. P., Tu, M. C. (2008a). Cold tolerance and altitudinal distribution of Takydromus lizards in Taiwan. Zoological Studies, 47: 438-444. Huang, S. P., Tu, M. C. (2008b). Heat tolerance and altitudinal distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. Journal of Thermal Biology, 33: 48-56. Huang, S. P., Chiou, C. R., Lin, T. E., Tu, M. C., Lin, C. C., Porter, W. P., Higham, T. (2013). Future advantages in energetics, activity time, and habitats predicted in a high‐altitude pit viper with climate warming. Functional Ecology, 27: 446-458. Huang, S. P., Porter, W. P., Tu, M. C., Chiou, C. R. (2014). Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia, 175: 25-35. Huang, S. P., Hung, K. W., Fan, H. C., Lin, T. E., Richard, R. (2020). Temperature rise curtails activity period predicted for a winter-active forest lizard, Scincella formosensis, from subtropical areas in Taiwan. Journal of Thermal Biology, 87: 102475. Huang, W. S. (1998). Reproductive cycles of the grass lizard, Takydromus hsuehshanensis, with comments on reproductive patterns of lizards from the central high elevation area of Taiwan. Copeia, 1998: 866-873. Huey, R. B. (1982). Temperature, physiology and the ecology of reptiles. In: Gans, C., Pough, F. H. (Eds.), Biology of the Reptilia. Vol 12. Academic Press. New York, 25-74. Huey, R. B., Bennett, A. F. (1987). Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution, 41: 1098-1115. Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez Pérez, H. J., Garland Jr, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276: 1939-1948. James, C., Shine, R. (1985). The seasonal timing of reproduction. Oecologia, 67: 464-474. Ji, X., Zhang, C. H. (2001). Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zoologica Sinica, 47: 256-265. Krebs, C. J. (1994). The experimental analysis of distribution and abundance. In: Krebs, C.J. (Ed.), Ecology. Addison-Wesley Publishing Co., Oxford, New York, 93–116. Les, H. L., Paitz, R. T., Bowden, R. M. (2007). Experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 307: 274-280. McCullough, E. C., Porter, W. P. (1971). Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology, 52: 1008-1015. Mitchell, N., Hipsey, M. R., Arnall, S., McGrath, G., Tareque, H. B., Kuchling, G., Vogwill, R., Sivapalan, M., Porter, W. P., Kearney, M. R. (2013). Linking eco-energetics and eco-hydrology to select sites for the assisted colonization of Australia’s rarest reptile. Biology, 2: 1-25. Mitchell, N. J., Kearney, M. R., Nelson, N. J., Porter, W. P. (2008). Predicting the fate of a living fossil: how willglobal warming affect sex determination and hatching phenology in tuatara? Proceedings of the Royal Society B: Biological Sciences, 275: 2185-2193. Mitchell, N. J., Rodriguez, N., Kuchling, G., Arnall, S. G., Kearney, M. R. (2016). Reptile embryos and climate change: Modelling limits of viability to inform translocation decisions. Biological Conservation, 204: 134-147. Noble, D. W., Stenhouse, V., Schwanz, L. E. (2018). Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta‐analysis. Biological Reviews, 93: 72-97. Packard, G. C., Tracy, C. R., Roth, J. J. (1977). The physiological ecology of reptilian eggs and embryos. And the evolution of viviparity within the Class Reptilia. Biological Reviews, 52: 71-105. Packard, G. C., Packard M. J. (1988). The physiological ecology of reptilian eggs and embryos. In: Gans, C., Huey, R. B. (Eds.). Biology of the Reptilia. Vol. 16. Liss. New York, 523-605. Phillips, J. A., Packard, G. C. (1994). Influence of temperature and moisture on eggs and embryos of the white-throated savanna monitor Varanus albigularis: implications for conservation. Biological Conservation, 69: 131-136. Porter, W. P., Mitchell, J. W., Beckman, W. A., DeWitt, C. B. (1973). Behavioral implications of mechanistic ecology. Oecologia, 13: 1-54. Porter, W. P., Mitchell, J. W. (2006). Method and system for calculating the spatial temporal effects of climate and other environmental conditions on animals, vol. 1. In: U. P. Office (Eds). Wisconsin Alumni Research Foundation, Madison. Pough, F. H. (1980). The advantages of ectothermy for tetrapods. The American Naturalist, 115: 92-112. Pounds, J. A., Fogden, M. P., Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature, 398: 611-615. Qualls, C. P., Andrews, R. M. (1999). Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biological Journal of the Linnean Society, 67: 353-376. Rabinovich, J., Pietrokovsky, S., Wisnivesky-Colli, C. (2006). Temperature and development rate of Triatoma guasayana (Hemiptera: Reduviidae) eggs under laboratory conditions: physiological and adaptive aspects. Physiological Entomology, 31: 361-370. Reibisch, J. (1902). Ueber den Einfluss der Temperatur auf die Entwicklung von Fisch-Eiern. Wiss Meeresuntersuch, 2: 213-231. Saidapur, S., Radder, R., Shanbhag, B. (2002). Influence of incubation temperature and substrate on eggs and embryos of thegarden lizard, Calotes versicolor (Daud.). Amphibia-Reptilia, 23: 71-82. Sharpet, P. J., DeMichele, D. W. (1977). Reaction kinetics of poikilotherm development. Journal of Theoretical Biology, 64: 649-667. Shine, R. (1983). Reptilian reproductive modes: the oviparity-viviparity continuum. Herpetologica, 1-8. Shine, R. (1987). Reproductive mode may determinegeographic distributions in Australian venomous snakes (Pseudechis, Elapidae). Oecologia, 71: 608-612. Shine, R. (1999). Egg‐laying reptiles in cold climates: determinants and consequences of nest temperatures in montane lizards. Journal of Evolutionary Biology, 12: 918-926. Shine, R., Bull, J. (1979). The evolution of live-bearing in lizards and snakes. The American Naturalist, 113: 905-923. Shine, R., Elphick, M. J. (2001). The effect of short-term weather fluctuations on temperatures inside lizard nests, and on the phenotypic traits of hatchling lizards. Biological Journal of the Linnean Society, 72: 555-565. Shine, R., Elphick, M. J., Barrott, E. G. (2003). Sunny side up: lethally high, not low, nest temperatures may prevent oviparous reptiles from reproducing at high elevations. Biological Journal of the Linnean Society, 78: 325-334. Shine, R., Elphick, M. J., Harlow, P. S. (1997). The influence of natural incubation environments on the phenotypic traits of hatchling lizards. Ecology, 78: 2559-2568. Shine, R., Harlow, P. S. (1996). Maternal manipulation of offspring phenotypes via nest‐site selection in an oviparous lizard. Ecology, 77: 1808-1817. Steen, D. A., Sterrett, S. C., Miller, S. A., Smith, L. L. (2007). Terrestrial movements and microhabitat selection of overwintering subadult eastern mud turtles (Kinosternon subrubrum) in southwest Georgia. Journal of Herpetology, 41: 532-535. Stenhouse, V., Carter, A. L., Chapple, D.g., Hare, K. M., Hartley, S., Nelson, N. J. (2018). Modelled incubation conditions indicate wider potential distributions based on thermal requirements for an oviparous lizard. Journal of Biogeography, 45: 1872-1883. Su, H. J. (1984). Studies on the climate and vegetation types of the natural forest in Taiwan. (II). Altitudinal vegetation zones in relation to temperaturegradient. Quarterly Journal of Chinese Forestry, 17: 57-73. Ultsch, G. R. (2006). The ecology of overwintering among turtles: where turtles overwinter and its consequences. Biological Reviews, 81: 339-367. Walther, G. R. (2003). Plants in a warmer world. Perspectives in plant ecology, Evolution and Systematics, 6: 169-185. Webb, G. J., Beal, A. M., Manolis, S.C., Dempsey, K. E., 1987. The effects of incubation temperature on sex determination and embryonic development rate in Crocodylus johnstoni and C. porosus. In: Webb, G. J., Manolis, S. C., Whitehead, P. J. (Eds.), Wildlife Management: Crocodiles and Alligators. Surry Beatty and Sons, Sydney, 507-531. Williams, C. M., Henry, H. A., Sinclair, B. J. (2015). Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90: 214-235. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |