Responsive image
博碩士論文 etd-0411121-173536 詳細資訊
Title page for etd-0411121-173536
論文名稱
Title
利用振幅解調之自我注入鎖定雷達
Self-Injection-Locked Radar Using Amplitude Demodulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-04-20
繳交日期
Date of Submission
2021-05-11
關鍵字
Keywords
表面聲波濾波器、振幅解調、頻率解調器、自我注入鎖定雷達、生命徵象感測
SAW filter, AM demodulation, frequency demodulator, SIL radar, vital sign detection
統計
Statistics
本論文已被瀏覽 199 次,被下載 5
The thesis/dissertation has been browsed 199 times, has been downloaded 5 times.
中文摘要
本論文提出一種利用表面聲波濾波器和功率檢測器的頻率解調器取代頻率鑑別器,其具有低成本且小尺寸的優勢。將該解調器操作於2.36至2.39 GHz的醫療身體感測網路(medical body area network, MBAN)頻段並結合自我注入鎖定振盪器(self-injection-locked oscillator, SILO)進行生命徵象感測。首先藉由模擬軟體和訊號產生器證明該系統架構之可行性,並提出曲線擬合方式還原頻率之變化;接著是致動器以及人體量測實驗,由致動器擺動和人體呼吸運動產生的都卜勒位移,進入頻率解調機制和訊號處理後得到待測物之移動軌跡。
Abstract
This paper proposes a frequency demodulator using surface acoustic wave filter and power detector to replace the frequency discriminator, which has the advantages of low cost and small size. The demodulator is operated in the 2.36 to 2.39 GHz medical body area network (MBAN) frequency band and combined with a self-injection-locked oscillator (SILO) for vital sign sensing. First, the feasibility of the system architecture is proved by simulation software and signal generator, and a curve fitting method is proposed to restore the frequency change; then the actuator and the human body measurement experiment are generated by the swing of the actuator and the breathing motion of the human body. Doppler displacement enters the frequency demodulation mechanism and signal processing to obtain the moving trajectory of the object under test.
目次 Table of Contents
論文審定書………………………………………………………………...…...i
論文公開授權書…………………………………………………………...…..ii
誌謝…………………………………………………………………………….iii
摘要…………………………………………………………………………….iv
Abstract…………………………………………………………………………v
目錄…………………………………………………………….………………vi
圖次……………………………………………………………….…………..viii
表次……………………………………………………………….…………...xii
第一章 序論…………………………………………………………………....1
1.1研究背景……….......................................................................................1
1.2非同調頻率解調器...................................................................................3
1.2.1頻率鑑別器……………………………………………………................3
1.2.2鎖相迴路……………………………………...………............………….4
1.2.3微分器....………………………………………………………................5
1.3章節規劃...................................................................................................5
第二章 雷達系統…………………………….................................................6
2.1整體架構…...............................................................................................6
2.2頻率解調器製作......................................................................................10
2.2.1橢圓濾波器……………………………………………………...............10
2.2.2表面聲波濾波器...................................................................................14
2.2.3功率檢測器…………………………………………………............…...16
2.3曲線擬合..................................................................................................21
2.4頻率鑑別器…….......................................................................................27
第三章 生命徵象感測實驗…………………………………………………..30
3.1致動器量測..............................................................................................30
3.1.1實驗架構…………………………………………………....…………...30
3.1.2零點偵測………………………………………………....……………...32
3.1.3動態範圍偵測………………………………………....………………...39
3.2人體量測……..........................................................................................41
第四章 結論與未來展望……………………………………………………..46
參考文獻………………………………………………………………………47

參考文獻 References
[1] R.J Doviak and D.S Zmic, “Doppler radar and weather observations”, New York: Acadamic, 1993.
[2] J. Hatch, A. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845–860, Mar. 2012.
[3] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580–1588, Jun. 2010.
[4] Dept. of Atmospheric Sciences, NCU. [Online] Available:
http://www.atm.ncu.edu.tw/about_5.php
[5] Carbuyer. [Online] Available:
http://www.how01.com/post_66mQyOo40vrdp.html
[6] BOSCH. [Online] Available:
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/automatic-emergency-braking/front-radar-sensor
[7] Guang Ming. [Online] Available: https://guangming.com.my/
[8] Central Weather Bureau. [Online] Available:
https://www.cwb.gov.tw/V8/C/W/OBS_Radar.html
[9] CAACAR. [Online] Available: https://zh.caacar.com/wiki/1319.html
[10] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[11] C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, “60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing.” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635–1643, Mar. 2018.
[12] I. Mostafanezhad, O. Boric-Lubecke, and V. Lubecke, “A coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring,” in Proc. IEEE Radio Wireless Symp. (RWS), New Orleans, LA, USA, Jan. 2010, pp. 571–574.
[13] F.-K. Wang, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Displacement monitoring system based on a quadrature self-injection-locked radar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 1363–1366.
[14] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013.
[15] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011.
[16] P.-H. Wu, F.-H. Chung, P. W. Hsu, “A 5.8 GHz phase- and self-injection-locked CMOS radar sensor chip for vital sign detector miniaturization”, in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, May 2016.
[17] C. H. Tseng, L. T. Yu, J.K. Huang and C. L. Chang, “A wearable Self-Injection-Locked sensor with active integrated antenna and Differentiator-Based envelope detector for Vital-Sign detection from chest wall and wrist,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2511-2521, May 2018.
[18] 蘇翊碩,利用訊號微分頻率解調器之自我注入鎖定生理都卜勒雷達,國立中山大學電機工程學系碩士論文,2018。
[19] R. Adler, “A study of locking phenomena in oscillators,” in Proc of the IRE, vol. 34,
no. 6, pp. 351-357, June 1946.
[20] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[21] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 77 1165–1168, June 2009.
[22] Wiki. [Online] Available:
https://commons.wikimedia.org/wiki/File:Electronic_linear_filters.svg
[23] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications.” New York, NY, USA: Wiley, 2001.
[24] J. Xu, F. Xiao, Y. Cao, Y. Zhang, and X. H. Tang, ‘‘Compact microstrip filter with third-order quasi-elliptic bandpass response,’’ IEEE Access, vol. 6, pp. 63375–63381, 2018.
[25] Y. Wang, F. Xiao, Y. Cao, Y. Zhang, and X. Tang, “Novel wideband microstrip filtering power divider using multiple resistors for port isolation,” IEEE Access, vol. 7, pp. 61868-61873, 2019.
[26] B. Yuan, et al, “Design Procedure of a Microstrip Filter Facilitated by Lumped-Element Equivalent Circuit Representation,” Asia-Pacific Microwave Conference (APMC), 2019.
[27] Lord Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid.” Proc. London Math. Soc., vol.7, pp.4-11,1885.
http://www2.nkfust.edu.tw/~jcyu/Paper/435081.pdf
[28] 黃仕泓、柯正浩,“表面聲波感測器之前瞻研究,”物理雙月刊.2004 年.[Online] Available: https://www.ps-taiwan.org/bimonth2/download.php?d=1&cpid=138&did=8
[29] R. M. White and F. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., vol. 17, pp.314-316, 1965.
[30] 簡俊謙,表面聲波元件之設計及其在寬頻振盪器之應用,國立交通大學電信工程學系碩士論文,2000。
[31] S. Haykin and M. Moher, “Communication System”5th ed. John Wiley & Sons (Asia) Pte Ltd, 2010.
[32] Chegg Study. [online] Available:
https://www.chegg.com/homework-help/definitions/envelope-detection-4.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code