論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-05-12
校外 Off-campus:開放下載的時間 available 2025-05-12
論文名稱 Title |
應用六埠技術之自我注入鎖定雷達 Self-Injection-Locked Radar Using Six-port Technology |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
64 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-04-30 |
繳交日期 Date of Submission |
2020-05-12 |
關鍵字 Keywords |
自我注入鎖定雷達、六埠電路、頻率解調器、帶通濾波器、延遲單元 Self-Injection-Locked Oscillator、six-port correlator、frequency demodulator、band pass filter、delay line |
||
統計 Statistics |
本論文已被瀏覽 5814 次,被下載 0 次 The thesis/dissertation has been browsed 5814 times, has been downloaded 0 times. |
中文摘要 |
頻率解調器在自我注入鎖定雷達系統中扮演著關鍵性的角色,目前普遍以正交混波器與射頻延遲單元,如同軸纜線或表面聲波濾波器組成。當操作頻率升高時,現有電路元件會遭遇到損耗、頻寬、尺寸、與成本等問題。本論文利用六埠電路與帶通濾波器完成頻率解調電路。當系統操作在2.4 GHz時,選用表面聲波器作為延遲單元,配合微帶線六埠電路與波包檢測器可達成頻率解調功能。為了因應未來較高頻段的自我注入鎖定雷達系統,因此設計一5.8 GHz ISM頻段的帶通濾波器,頻寬為150 MHz,損耗約為10 dB,時間延遲為10 ns,可作為延遲單元使用。 本論文先以射頻訊號產生器輸出的頻率調制訊號驗證頻率解調器功能正常後,再加上自我注入鎖定振盪器與收發天線進行完整功能測試,該雷達雛型電路可對50公分外的受測者進行非接觸式生理徵象感測。 |
Abstract |
The frequency demodulator plays a major role in Self-Injection-Locked(SIL) system. At present, it’s generally composed of Quadrature demodulation and the unit of delay line, such as saw filter (surface acoustic wave filter) or Coaxial cable. As we rise the high frequency, the elements of circuits will face the problem of loss, bandwidth, size and cost etc. This thesis describes using six-port circuit and band-pass filter to form a frequency demodulator. As system operates at 2.4 GHz, we select saw filter to provide a unit of delay time and cooperate with six-port circuit by micro strip line and envelope detector to reach the function of frequency demodulation. In order to cope with Self-Injection-Locked(SIL) system with high frequency bandwidth , we try to design band-pass filter at 5.8 GHz in ISM bandwidth which can be used as a unit of delay time. It has 150 MHz bandwidth, insertion loss about 10 dB and group delay of 10 ns. First of all, we use ESG vector signal generator to produce signal of frequency modulation to make sure the system is correct. Secondly, add Self-Injection-Locked voltage-controlled oscillator (VCO) and antenna as a receiver to check the output signal thoroughly. The original circuit of radar system can be used to test people out of 50 centimeters by wireless physiological signal sensing. |
目次 Table of Contents |
圖目錄 vii 表目錄 x 第一章 序論 1 1.1 研究背景與動機 1 1.2 自我注入鎖定(SIL)雷達 1 1.3 FM頻率解調 2 1.4 論文大綱 5 第二章 六埠電路 6 2.1 六埠相關器 6 2.1.1 功率分配器(wilkinson power divider) 7 2.1.2 〖90〗^°耦合器(quadrature hybrid coupler) 11 2.1.3 六埠相關器(six port correlator) 14 2.2 通訊系統檢波器 18 2.3 六埠電路解調器 20 2.4 工作原理分析 21 第三章 時間延遲濾波器的設計 23 3.1 濾波器簡介 23 3.2 群延遲(group delay) 25 3.3 濾波器相關設計理論 26 3.3.1低通集總元件式濾波器設計 26 3.4 平行耦合濾波器設計 30 3.4.1平行耦合線的參數 30 3.5 微帶線基本特性 31 3.6 制定濾波器規格跟理想響應 33 3.7 時間延遲濾波器(group delay filter) 35 3.7.1 串接兩個時間延遲濾波器(two series of group delay filter) 38 3.7.2 串接三個時間延遲濾波器(three series of group delay filter) 39 第四章 模擬與量測結果分析 41 4.1 六埠技術之自我鎖定雷達系統量測 41 4.1.1 訊號產生器的量測 41 4.1.2 致動器(actuator)的量測 43 4.1.3 生理訊號的量測 46 第五章 結論 47 參考文獻 48 |
參考文獻 References |
[1] T. S. Horng, “Self-injection-locked radar: An advance in continuous-wave tech-nology for emerging radar systems,” 2013 Asia-Pacific Microw. Conf. Proc. (APMC), Seoul, 2013, pp. 566-569. [2] A. D. Droitcour, O. Boric-Lubecke, G. T. A. Kovacs, "Signal-to-noise ratio in Doppler radar systems for heart and respiratory rate measurements", IEEE Trans. Microw. Theory Tech., vol. 57, pp. 2498-2507, Oct. 2009. [3] M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008 [4] J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557-565, Apr. 1992. [5] W. D. Boyer, “A diplex, Doppler phase comparison radar,” IEEE Trans. Aerosp. Navig. Electron., vol. ANE-10, no. 1, pp. 27-33, March 1963. [6] C. Li et al., "A review on recent progress of portable short-range non-contact mi-crowave radar systems", IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692-1706, May 2017. F. K. Wang et al., “An injection-locked detector for con-current spectrum and vital sign sensing,” 2010 IEEE MTT-S Int. Microw. Symp., Anaheim, CA, 2010, pp. 768-771. [7] J.-M. Muñoz-Ferreras, Z. Peng, R. Gómez-García, C. Li, "Review on advanced short-range multimode continuous-wave radar architectures for healthcare appli-cations", IEEE J. Electromagn. RF Microw. Med. Biol., vol. 1, no. 1, pp. 14-25, Jun. 2017. [8] F. K. Wang, T. S. Horng, K. C. Peng, J. K. Jau, J. Y. Li and C. C. Chen, “Single-Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign Detection With Random Body Movement Cancellation,” IEEE Trans. Microw. Theory and Techn., vol. 59, no. 12, pp. 3577-3587, Dec. 2011. [9] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Cheng, “A novel vital sign sensor based on a self-injection-locked oscillator,“ IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [10] 王復康,可應用於無線電系統之射頻感測與接收電路,國立中山大學電機工程研究所碩士論文,民國98年 [11] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, Huang Li, K. Imamura, B. Busze, F. Bouwens, M. Konijnenburg, J. Santana, A. Breeschoten, J. Huisken, G. Dolmans, H. de Groot, “A 2.4GHz ULP OOK Single-Chip Transceiver for Healthcare Application,” in Proc. Int. Solid-State Circuits conf. (ISSCC ’11), San Franciso, CA, Feb. 22-24, 2011, pp. 458-460. [12] K.H. Huang, C.K. Wang, “A Cost Effective Binary FSK Demodulator For Low-IF Radios,” in Proc. VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on, Hsinchu, Apr. 18-20, 2011, pp. 133-136. [13] P.-H. Wu, F.-H. Chung, P. W. Hsu, "A 5.8 GHz phase-and self-injection-locked CMOS radar sensor chip for vital sign detector miniaturization", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, May 2016 [14] 蘇翊碩,利用訊號微分頻率解調器之自我注入鎖定生裡都卜勒雷達,國立中山大學電機工程學系碩士論文,民國107年 [15] J. Osth, O. Owais, M. Karlsson, A. Serban, and S. Gong, “Schottky diode as high-speed variable impedance load in six-port modulators,” in Proc. IEEE Int Ultra-Wideband (ICUWB) Conf, 2011, pp. 68–71. [16] P. Håkansson, D. Wang and S. Gong, “An ultra-wideband I/Q demodolator covering from 3.1-4.8 GHz”, ISAST Transactions on Electronics and Signal Processing, vol. 2, no. 1, pp. 111-116, 2008. [17] Ghannouchi F.M., Mohammadi A. The Six-Port Technique. Artech House; Norwood, MA, USA: 2009. [18] T. Eireiner, T. Schnurr, and T. Muller, “Integration of a six-port receiver for mm-wave communication,” in Proc. IEEE Mediterranean Electrotechnical Conf. MELECON 2006, 2006, pp. 371–376. [19] T. Hentschel, “The six-port as a communications receiver,” IEEETransactions on Microwave Theory and Techniques, vol. 53, no. 3, pp.1039–1047, 2005. [20] Li J., Bosisio R., Wu K. A Collision Avoidance Radar Using six-port Phase/Frequency Discriminator (SPFD); Proceedings of the IEEE MTT-S International Microwave Symposium Digest; San Diego, CA, USA. 23–27 May 1994; pp. 1553–1556. [21] F. Ramírez, V. A. Araña, and A. Suárez, “Frequency demodulator using an injection-locked oscillator: analysis and design,” IEEE Microwave and Wireless Component Lett., vol. 18, issue 1, pp. 43–45, Jan. 2008. [22] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,”J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Dec.1995. [23] G. F. Engen, “The six-port reflectometer: An alternative network analyzer,” IEEE Trans. Microwave Theory Techn., vol. MTT-25, pp. 1075–1080, Dec. 1977. [24] D. Ghosh, A. De, M. C. Taylor, T. K. Sarkar, M. C. Wicks, E. L. Mokole, "Transmission and Reception by Ultra-Wideband (UWB) Antennas," IEEE Antennas and Propag. Mag., vol. 48, no. 5, pp. 67-99, Oct. 2006. [25] S. O. Tatu, E. Moldovan, K. Wu, and R. G. Bosisio, “A new direct millimeter-wave six-port receiver,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2517–2522, 2001. [26] B. Razavi , “Design considerations for direct-cpmversion receivers, IEEE Transactions on Circuits”IEEETransactions on Circuits and Systems—Part II: Analog and DigitalSignalProcessing, vol. 44, no. 6, pp. 428–435, 1997 [27] J. Osth, A. Serban, M.K. Owais et al., "Six-port gigabit demodulator", IEEE Trans. Microw. Theory Tech., vol. 59, no. 1, pp. 125-131, 2011. [28] D.M Pozar,Microwave Engineering,3rd ed.New York : Wiley,2005 [29] J. Bae, L. Yan, H.J. Yoo, “A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Application,” IEEE J. Solid-State Circuits, vol. 46, Apr. 2011, pp. 928-937. [30] C.S. Wang, K.D. Chu, C.K. Wang, “A 0.13µm CMOS 2.5Gb/s FSK demodulator using injection-locked technique,” IEEE Radio Frequency Integrated Circuits Symposium,2009 (RFIC ‘09), June 7-9, 2009, pp. 563-566. [31] H. Lee, T. Roh, J. Bae, H.J. Yoo, “A 60µW 10Mb/s fully digital FSK emodulator for power-jitter efficient for power-jitter efficient medical BAN,”IEEE Asia Pacific Conference on Circuits and Systems (APCCAS ‘10), Kuala Lumpur, Dec. 6-9, 2010, pp. 504-507. [32] E. Djoumessi and K. Wu, “Tunable multi-band direct conversion receiver for cognitive radio systems,” IEEE MTT-S Int. Microw. Symp. Dig., pp.217–220, Jun. 2009. [33] J. Östh, A. Serban, Owais , M. Karlsson, S. Gong, J. Haartsen, and P. Karlsson, “Diode configurations in six-port receivers with simplified interface to amplifier and filter,” in Proc. IEEE Int Ultra-Wideband (ICUWB) Conf, vol. 1, 2010, pp. 1–4. [34] A. Koelpin, G. Vinci, B. Laemmle, S. Lindner, F. Barbon, and R. Weigei, “Six-port technology for traffic safety,” IEEE Microw. Mag., vol. 13, no. 3, pp. 118–127, Apr. 2012. [35] J. Li, R.G. Bosisio, K. Wu, "Six-port direct digital millimeter wave receiver", Proc. of the IEEE MTT-S International Microwave Symp., pp. 1659-1662, 1994. [36] C.H. Tseng, L.T. Yu, J.K. Huang, and C. L. Chang, “A Wearable Self-Injection-Locked Sensor With Active Integrated Antenna and Differentiator-Based Envelope Detector for Vital-Sign Detection From Chest Wall and Wrist,” IEEE Trans.Microw.Theory Techn., VOl. 66, NO. 5,pp2511-2521, MAY 2018 [37] Y. Zhao, C. Viereck, J. F. Frigon, R. G. Bosisio, and K. Wu, “Direct quadrature phase shift keying modulator using six-port technology,” Electronics Letters, vol. 41, no. 21, pp. 1180–1181, 2005. [38] B. Luo and M. Y. W. Chia, “Direct 16 qam six-port modulator,” Electronics Letters, vol. 44, no. 15, pp. 910–911, 2008. [39] J. Hyyrylainen, L. Bogod, S. Kangasmaa, H.-O. Scheck, and T. Ylamurto, “Six-port direct conversion receiver,” in Proc. 27th EuropeanMicrowave Conf, vol. 1, 1997, pp. 341–346. [40] N. Seman, M. E. Bialkowski, S. Z. Ibrahim, and A. A. Bakar, “Design of an integrated correlator for application in ultra wideband six-port transceivers,” in IEEE Int. Antennas Propag. Soc. Symp., 2009, pp. 1–4. [41] S. M.Winter, H. J. Ehm, A. Koelpin, and R.Weigel, “Six-port receiver local oscillator power selection for maximum output SNR,” in IEEE Radio Wireless Symp., 2008, pp. 151–154. [42] J. Osth, O. Owais, M. Karlsson, A. Serban, and S. Gong, “Performance valuation of six-port receivers with simplified interface to amplifier and filter,” in Proc. IEEE Int Ultra-Wideband (ICUWB) Conf, 2011, pp. 190–194. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-05-12 校外 Off-campus:開放下載的時間 available 2025-05-12 您的 IP(校外) 位址是 3.139.108.48 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-05-12 Your IP address is 3.139.108.48 The current date is 2024-11-22 This thesis will be available to you on 2025-05-12. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-05-12 |
QR Code |