論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-06-16
校外 Off-campus:開放下載的時間 available 2026-06-16
論文名稱 Title |
4H碳化矽單晶於 (0001) 底面之奈米壓痕特性分析 Nanoindentation responses of 4H SiC single crystal on (0001) basal plane |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
137 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-06-14 |
繳交日期 Date of Submission |
2024-06-16 |
關鍵字 Keywords |
碳化矽、半導體材料、奈米壓痕、機械性質、背向散射電子繞射、穿透式電子顯微鏡 SiC, semiconductor material, nanoindentation, mechanical property, electron backscattered diffraction, transmission electron microscope |
||
統計 Statistics |
本論文已被瀏覽 64 次,被下載 0 次 The thesis/dissertation has been browsed 64 times, has been downloaded 0 times. |
中文摘要 |
透過在{0001}基面上進行奈米壓痕測試,並且系統地研究了六方4H SiC單晶(能隙為3.26 eV)的奈米力學。 4H SiC單晶是由M. C. Chou教授實驗室製備的,透過X射線繞射分析(XRD)檢查生長的晶體,已確認4H六方結構,c軸平行於晶體生長方向並具有週期性ABCB堆疊順序,2θ = 35.5°處的 (0004) 峰是唯一出現的峰,保證了單晶生長良好且缺陷最少,透過XRD測量,確定晶格參數 a 和 c 分別為 0.3073 和 0.1006 nm,與文獻報告的數據非常一致,透過XRD Rocking curve分析,證實生長的單晶內部應該有最少的缺陷。 透過在4H SiC(0001)基面上進行多次奈米壓痕測試,使用鈍或尖的壓痕尖端,彈性模量和硬度分別約為480-500 GPa和39-42 GPa,透過 Tabor 假設(應力~硬度/2.5),4H SiC 晶體的降服應力為約 15-17 GPa,發現具有鈍的或尖銳的壓痕尖端的第一次pop-in所需的應力約為 13-16 GPa,接近上述 15-17 GPa 的降服應力。這表明 4H SiC 晶體中移動差排的活化應力 (13-16 GPa) 非常接近最終的飽和流動應力 (15-17 GPa),因此,這種半導體 SiC 晶體的加工硬化程度最低。 為了更仔細地研究壓痕尖端應力集中效應,我們採用了三種具有不同尖端曲率半徑的尖端,鈍的尖端Rb~150 nm,中等的尖端Rb~50 nm,尖銳的尖端Rb~20 nm。Pop-in的應力確定為 16.1 GPa、14.8 GPa 和 13.2 GPa,證明了壓痕尖端下方的應力集中效應。尖端曲率半徑越尖銳,first pop-in的應力就會越低,測量到鈍頭或鋒利尖端下的first pop-in的位移約為 10 或 1 nm,可能是穿透式螺旋差排沿 [0001] 向下滑動約 10 或 1個 Burgers 向量(b = c 〜1 nm),透過對SiC晶體進行TEM表徵,我們發現了Burgers向量為b=c=[0001]的穿透式螺旋差排 (TSD)和Burgers向量為b=a1=的基底差排 (BPD) [121 ̅0 ]/3。 |
Abstract |
The nano-scaled mechanics for the hexagonal 4H SiC single crystals (with a bandgap of 3.26 eV) is examined systematically by using nanoindentation tests on the {0001} basal plane. The 4H SiC single crystal was prepared by Prof. M. C. Chou’s lab. The grown crystal has been examined carefully by X-Ray diffraction (XRD) to confirm the 4H hexagonal structure, with the basal plane lying on the horizon plane and the c-axis parallel to the crystal growth direction, with the periodical ABCB staking sequence. The (0004) peak at 2=35.5° is the only peak appeared, ensuring the well-grown single crystal orientation with minimum defects. From the XRD measurement, the lattice parameters, a and c, are determined to be 0.3073 and 0.1006 nm, respectively, well consistent with the reported data in literature. Through the analysis of XRD rocking curves, it is confirmed that there should be minimum defects inside the as-grown single crystal. By using multiple nanoindentation tests on the 4H SiC (0001) basal plane, with a blunt or sharp indent tip, the elastic modulus and nano-scaled hardness were about 480-500 GPa and 39-42 GPa, respectively. By applying the Tabor’s assumption (stress~ hardness/2.5), the yield stress of this 4H SiC crystal is determined to be about 15-17 GPa. The stress required for first dislocation pop-in, with a blunt or sharp indent tip, is found to be about 13-16 GPa, close to the above yield stess of 15-17 GPa. This indicates that the stress for the first activation of moving dislocation in the 4H SiC crystal (13-16 GPa) is pretty close to the final saturated flow stress (15-17 GPa). There is minimum work hardening in this semiconductor SiC crystal. To more closely examine the indent tip stress concentration effects, we adopted three tips with different tip radii of curvatures, the blunt one with Rb~150 nm, the medium one with Rb~50 nm, and the sharp one with Rb~20 nm. The stress for the first dislocation pop-in was determined to be 16.1 GPa, 14.8 GPa and 13.2 GPa, demonstrating the stress concentration effect beneath the indent tip. With a sharper tip radius of curvature, the stress for the first pop-in would be lower. The first pop-in displacement under the blunt or sharp indent tip was measured to be about 10 or 1 nm, likely a result of the threading screw dislocation along the vertical [0001] sliding downward by about 10 or 1 Burgers vector (b = c ~ 1 nm). Through TEM characterizations on the indented SiC crystal, we have found the vertical threading screw dislocations (TSD) with a Burgers vector of b=c=[0001], and the basal plane dislocations (BPD) with a Burgers vector of b=a1=[12 ̅10]/3. |
目次 Table of Contents |
論文審定書 i Acknowledgements ii 中文摘要 iv Abstract v Table of Content vii List of Figures x List of Tables xv Chapter 1 Preface 1 1.1 Brief introduction of various generation of semiconductors 1 1.2 N-type and P-type SiC semiconductors 5 1.3 Motive of this study 10 Chapter 2 Literature Review 12 2.1 Various crystal structures of SiC single crystals 12 2.2 Fabrication means for SiC single crystals or thin films 20 2.2.1 Physical vapor transport method 21 2.2.2 High temperature chemical vapor deposition 23 2.2.3 Solution growth 25 2.3 Mechanical properties of SiC 26 2.4 Defects in SiC 35 2.4.1 Generation of dislocations 37 2.4.2 Micropipe defects 41 2.4.3 Threading screw dislocations 44 2.4.4 Threading edge dislocations and basal plane dislocations 45 2.4.5 Defect reduction 48 2.5 Potential applications of SiC 50 2.5.1 High voltage SiC device applications 52 2.5.2 SiC solar inverter 53 2.5.3 Railway traction inverter 54 2.5.4 Electrical vehicle 55 Chapter 3 Experimental Methods 57 3.1 Sample pre-processing 57 3.2 Optical microscopy observation (OM) 60 3.3 X-ray diffraction (XRD) confirmation of crystal structures 61 3.4 Scanning electron microscopy (SEM) 64 3.5 Nanoindentation 64 3.6 Electron backscattered diffraction (EBSD) 65 3.7 Kernal average misorientation (KAM) 66 3.8 Transmission electron microscopy (TEM) 67 Chapter 4 Experimental Results 69 4.1 Sample preparation 69 4.2 OM observation 69 4.3 White light interferometer 71 4.4 XRD examination 75 4.5 EBSD examination on the as-grown surface 78 4.6 Nanoindentation testing 82 4.7 Minimum work hardening, distinctly different from metals 87 4.8 Stress concentration caused by different tip radii of curvatures 89 4.9 The possible activated dislocations 94 4.10 Extracting the TEM thin samples by FIB 96 4.11 Transmission electron microscopy (TEM) 97 4.11.1 The as-grown crystal without loading 97 4.11.2 The indented specimen using the blunt tip to 900 nm depth 99 4.11.3 The indentation using the sharp tip to a shallow depth of 300 nm 103 4.12 Closing remarks 107 Chapter 5 Discussion 108 5.1 The first dislocation pop-in phenomenon 108 5.2 Comparison between the mechanical response in SiC and GaN 110 Chapter 6 Conclusion 112 Chapter 7 Future Works 114 References 115 |
參考文獻 References |
[1] I. Ferain, C. A. Colinge, J. P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors, Nature, 479 (2011) 310-316. [2] X. She, A. Q. Huang, O. Lucia, B. Ozpineci, Review of silicon carbide power devices and their applications, IEEE Transactions on Industrial Electronics, 64 (2017) 8193-8205. [3] Toyota to trial new SiC Power Semiconductor Technology., in, http://newsroom.toyota.co.jp/en/detail/5692153, (2015). [4] H. Sarnago, O. Lucia, A. Mediano, J. M. Burdio, Design and implementation of a high-efficiency multiple-output resonant converter for induction heating applications featuring wide bandgap devices, IEEE Transactions on Power Electronics, 29 (2013) 2539-2549. [5] F. Roccaforte, P. Fiorenza, M. Vivona, G. Greco, F. Giannazzo, Selective doping in silicon carbide power devices, Materials, 14 (2021) 3923. [6] T. L. Straubinger, M. Bickermann, M. Rasp, R. Weingartner, P. J. Wellmann, A. Winnacker, Aluminum doping of 6H-and 4H-SiC with a modified PVT growth method, Materials Science Forum, 389 (2002) 131-134. [7] M. Capano, R. Santhakumar, R. Venugopal, M. Melloch, J. Cooper, Phosphorus implantation into 4H-silicon carbide, Journal of Electronic Materials, 29 (2000) 210-214. [8] I. Manning, G. Y. Chung, E. Sanchez, M. Dudley, T. Ailihumaer, J. Q. Guo, O. Goue, B. Raghothamachar, Influence of dopant concentration on dislocation distributions in 150mm 4H SiC wafers, Materials Science Forum, 963 (2019) 60-63. [9] I. Manning, Y. Matsuda, G. Chung, E. Sanchez, M. Dudley, T. Ailihumaer, B. Raghothamachar, Progress in bulk 4H SiC crystal growth for 150 mm wafer production, Materials Science Forum, 1004 (2020) 37-43. [10] J. Quast, D. Hansen, M. Loboda, I. Manning, K. Moeggenborg, S. Mueller, C. Parfeniuk, E. Sanchez, C. Whiteley, High quality 150 mm 4H SiC wafers for power device production, Materials, 14 (2021), 3923. [11] R. Leonard, Y. Khlebnikov, A. R. Powell, C. Basceri, M. Brady, I. Khlebnikov, J. R. Jenny, D. Malta, M. J. Paisley, V. F. Tsvetkov, 100 mm 4HN-SiC wafers with zero micropipe density, Materials Science Forum, 600 (2009) 7-10. [12] E. Berkman, R. Leonard, M. J. Paisley, Y. Khlebnikov, M. J. O'Loughlin, A. A. Burk, A. R. Powell, D. Malta, E. Deyneka, M. Brady, Defect status in SiC manufacturing, Materials Science Forum, 615 (2009) 3-6. [13] T. Kimoto, J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications, John Wiley & Sons, (2014). [14] 伊藤醇一, 岩附正明, 深沢力, 炭化ケイ素の同定のための結晶学的データと X 線回折データの再検討, 分析化学, 42 (1993) 445-459. [15] W. Yoo, H. Matsunami, Growth Simulation of SiC Polytypes and Application to DPB-Free 3C-SiC on Alpha-SiC Substrates, Springer, 71 (1992) 66-77. [16] M. Ikeda, H. Matsunami, T. Tanaka, Site effect on the impurity levels in 4 H, 6 H, and 1 5 R SiC, Physical Review B, 22 (1980) 2842. [17] W. Suttrop, G. Pensl, W. Choyke, R. Stein, S. Leibenzeder, Hall effect and infrared absorption measurements on nitrogen donors in 6H‐silicon carbide, Journal of Applied Physics, 72 (1992) 3708-3713. [18] W. Choyke, L. Patrick, Exciton Recombination Radiation and Phonon Spectrum of 6H SiC, Physical Review, 127 (1962) 1868. [19] W. S. Y. W. S. Yoo, H. M. H. Matsunami, Solid-state phase transformation in cubic silicon carbide, Japanese Journal of Applied Physics, 30 (1991) 545. [20] M. Stockmeier, R. Müller, S. Sakwe, P. Wellmann, A. Magerl, On the lattice parameters of silicon carbide, Journal of Applied Physics, 105 (2009) 033511. [21] S. Sasaki, J. Suda, T. Kimoto, Doping-induced lattice mismatch and misorientation in 4H-SiC crystals, Materials Science Forum, 717 (2012) 481-484. [22] R. Olesinski, G. Abbaschian, The C− Si (carbon-silicon) system, Bulletin of Alloy Phase Diagrams, 5 (1984) 486-489. [23] J. A. Lely, Darstellung von einkristallen von silicium carbid und beherrschung von art und menge der eingebauten verunreinigungen, Ber. Deut. Keram. Ges, 32 (1955) 229-231. [24] S. Y. Karpov, Y. N. Makarov, M. Ramm, Simulation of sublimation growth of SiC single crystals, Physica Status Solidi (b), 202 (1997) 201-220. [25] D. Elwell, H. J. Scheel, E. Kaldis, Crystal growth from high temperature solutions, Journal of The Electrochemical Society, 123 (1976) 319. [26] D. H. Hofmann, M. H. Müller, Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals, Materials Science and Engineering: B, 61 (1999) 29-39. [27] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1583. [28] J. Boussinesq, Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques, Gauthier-Villars, 33 (1885). [29] H. Hertz, Ueber die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik, 92 (1882) 156-171. [30] J. Wei, B. L. McFarlin, A. J. W. Johnson, A multi-indent approach to detect the surface of soft materials during nanoindentation, Journal of Materials Research, 31 (2016) 2672-2685. [31] N. Stilwell, D. Tabor, Elastic recovery of conical indentations, Proceedings of the Physical Society, 78 (1961) 169. [32] S. Goel, X. Luo, P. Comley, R. L. Reuben, A. Cox, Brittle–ductile transition during diamond turning of single crystal silicon carbide, International Journal of Machine Tools and Manufacture, 65 (2013) 15-21. [33] B. R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, Journal of Materials Science, 10 (1975) 113-122. [34] S. Goel, X. Luo, A. Agrawal, R. L. Reuben, Diamond machining of silicon: a review of advances in molecular dynamics simulation, International Journal of Machine Tools and Manufacture, 88 (2015) 131-164. [35] P. Chai, S. Li, Y. Li, L. Liang, X. Yin, Mechanical behavior investigation of 4H-SiC single crystal at the micro–nano scale, Micromachines, 11 (2020) 102. [36] Y. Bu, H. Yoshimoto, N. Watanabe, A. Shima, Fabrication of 4H-SiC PiN diodes without bipolar degradation by improved device processes, Journal of Applied Physics, 122 (2017) 244504. [37] C. Ota, J. Nishio, A. Okada, R. Iijima, Origin and generation process of a triangular single Shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes, Journal of Electronic Materials, 50 (2021) 6504-6511. [38] T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, A. Shima, Analysis of degradation phenomena in bipolar degradation screening process for SiC-MOSFETs, IEEE, (2019) 259-262. [39] J. D. Caldwell, R. E. Stahlbush, M. G. Ancona, O. J. Glembocki, K. D. Hobart, On the driving force for recombination-induced stacking fault motion in 4H–SiC, Journal of Applied Physics, 108 (2010) 044503. [40] N. Shinagawa, T. Izawa, M. Manabe, T. Yamochi, N. Ohtani, Populations and propagation behaviors of pure and mixed threading screw dislocations in physical vapor transport grown 4H-SiC crystals investigated using X-ray topography, Japanese Journal of Applied Physics, 59 (2020) 091002. [41] N. Hoshino, I. Kamata, Y. Tokuda, E. Makino, T. Kanda, N. Sugiyama, H. Kuno, J. Kojima, H. Tsuchida, Fast growth of n-type 4H-SiC bulk crystal by gas-source method, Journal of Crystal Growth, 478 (2017) 9-16. [42] H. Suo, S. Tsukimoto, K. Eto, H. Osawa, T. Kato, H. Okumura, Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC, Japanese Journal of Applied Physics, 57 (2018) 065501. [43] M. Dudley, X. Huang, W. Huang, A. Powell, S. Wang, P. Neudeck, M. Skowronski, The mechanism of micropipe nucleation at inclusions in silicon carbide, Applied Physics Letters, 75 (1999) 784-786. [44] S. Sakwe, R. Müller, P. Masri, P. Wellmann, Dislocation evolution and distribution during physical vapor transport (PVT) growth of bulk 6H‐SiC single crystals, Physica Status Solidi, 3 (2006) 562-566. [45] B. Gao, K. Kakimoto, Dislocation-density-based modeling of the plastic behavior of 4H–SiC single crystals using the Alexander–Haasen model, Journal of Crystal Growth, 386 (2014) 215-219. [46] B. Gao, K. Kakimoto, Three-dimensional modeling of basal plane dislocations in 4H-SiC single crystals grown by the physical vapor transport method, Crystal Growth & Design, 14 (2014) 1272-1278. [47] M. Sonoda, T. Nakano, K. Shioura, N. Shinagawa, N. Ohtani, Structural characterization of the growth front of physical vapor transport grown 4H-SiC crystals using X-ray topography, Journal of Crystal Growth, 499 (2018) 24-29. [48] F. Frank, Capillary equilibria of dislocated crystals, Acta Crystallographica, 4 (1951) 497-501. [49] K. Koga, Y. Fujikawa, Y. Ueda, T. Yamaguchi, Growth and characterization of 6H-SiC bulk crystals by the sublimation method, Springer, 1992, 96-100. [50] R. Glass, D. Henshall, V. Tsvetkov, C. Carter Jr, SiC seeded crystal growth, Physica Status Solidi (b), 202 (1997) 149-162. [51] N. Ohtani, M. Katsuno, T. Fujimoto, T. Aigo, H. Yashiro, Surface step model for micropipe formation in SiC, Journal of Crystal Growth, 226 (2001) 254-260. [52] J. Giocondi, G. S. Rohrer, M. Skowronski, V. Balakrishna, G. Augustine, H. Hobgood, R. Hopkins, An atomic force microscopy study of super-dislocation/micropipe complexes on the 6H-SiC (0001) growth surface, Journal of Crystal Growth, 181 (1997) 351-362. [53] J. Takahashi, N. Ohtani, Modified‐Lely SiC Crystals Grown in [110 ̅0] and [112 ̅0] Directions, Physica Status Solidi (b), 202 (1997) 163-175. [54] N. Ohtani, M. Katsuno, H. Tsuge, T. Fujimoto, M. Nakabayashi, H. Yashiro, M. Sawamura, T. Aigo, T. Hoshino, Propagation behavior of threading dislocations during physical vapor transport growth of silicon carbide (SiC) single crystals, Journal of Crystal Growth, 286 (2006) 55-60. [55] E. Sanchez, J. Liu, M. De Graef, M. Skowronski, W. Vetter, M. Dudley, Nucleation of threading dislocations in sublimation grown silicon carbide, Journal of Applied Physics, 91 (2002) 1143-1148. [56] S. Ha, G. S. Rohrer, M. Skowronski, V. Heydemann, D. Snyder, Plastic deformation and residual stresses in SiC boules grown by PVT, Materials Science Forum, 338 (2000). [57] D. Hull, D. J. Bacon, Introduction to dislocations, Butterworth-Heinemann, (2001). [58] D. Nakamura, S. Yamaguchi, I. Gunjishima, Y. Hirose, T. Kimoto, Topographic study of dislocation structure in hexagonal SiC single crystals with low dislocation density, Journal of Crystal Growth, 304 (2007) 57-63. [59] D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, K. Takatori, Ultrahigh-quality silicon carbide single crystals, Nature, 430 (2004) 1009-1012. [60] K. Madjour, Silicon carbide market update: From discrete devices to modules, PCIM Europe, (2014) 9790. [61] J. Millan, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, A survey of wide bandgap power semiconductor devices, IEEE Transactions on Power Electronics, 29 (2013) 2155-2163. [62] D.-P. Sadik, J. Colmenares, G. Tolstoy, D. Peftitsis, M. Bakowski, J. Rabkowski, H.-P. Nee, Short-circuit protection circuits for silicon-carbide power transistors, IEEE Transactions on Industrial Electronics, 63 (2015) 1995-2004. [63] J. Mookken, B. Agrawal, J. Liu, Efficient and compact 50kW Gen2 SiC device based PV string inverter, VDE, (2014) 1-7. [64] M. H. Todorovic, F. Carastro, T. Schuetz, R. Roesner, L. Stevanovic, G. Mandrusiak, B. Rowden, F. Tao, P. Cioffi, J. Nasadoski, SiC MW pv inverter, VDE, (2016) 1-8. [65] Mitsubishi Electric Installs Railcar Traction System with All-SiC Power Modules on Shinkansen Bullet Trains, in, Mitsubishi Electric Corporation, http://www.mitsubishielectric.com/bu/transportation/products/train/, 2015. [66] K. Hamada, M. Nagao, M. Ajioka, F. Kawai, SiC—Emerging power device technology for next-generation electrically powered environmentally friendly vehicles, IEEE Transactions on Electron Devices, 62 (2014) 278-285. [67] T. Ogawa, A. Tanida, T. Yamakawa, M. Okamura, Verification of fuel efficiency improvement by application of highly effective silicon carbide power semiconductor to HV inverter, SAE Technical Paper, (2016). [68] C. Kunka, A. Trachet, G. Subhash, Interaction of Indentation‐Induced Cracks on Single‐Crystal Silicon Carbide, Journal of the American Ceramic Society, 98 (2015) 1891-1897. [69] S. R. Jian, J. Y. Juang, N. C. Chen, J. S. C. Jang, J. C. Huang, Y. S. Lai, Nanoindentation-induced structural deformation in GaN/AlN multilayers, Nanoscience and Nanotechnology Letters, 2 (2010) 315-321. [70] C. H. Chien, S. R. Jian, C. T. Wang, J. Y. Juang, J. C. Huang, Y. S. Lai, Cross-sectional transmission electron microscopy observations on the Berkovich indentation-induced deformation microstructures in GaN thin films, Journal of Physics D: Applied Physics, 40 (2007) 3985. [71] T. H. Sung, J. C. Huang, J. H. Hsu, S. R. Jian, Mechanical response of GaN film and micropillar under nanoindentation and microcompression, Applied Physics Letters, 97 (2010) 171904. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-06-16 校外 Off-campus:開放下載的時間 available 2026-06-16 您的 IP(校外) 位址是 3.129.209.87 現在時間是 2025-04-27 論文校外開放下載的時間是 2026-06-16 Your IP address is 3.129.209.87 The current date is 2025-04-27 This thesis will be available to you on 2026-06-16. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-06-16 |
QR Code |