論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
小型臺指期貨散戶多空比與台灣加權指數報酬率相關性探討-DCC GARCH模型 Analysis of the Correlation Between the Individual Investors' Long/Short Ratio in MTX and the Returns of the Taiwan Weighted Stock Index - DCC GARCH Model |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
46 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-06-13 |
繳交日期 Date of Submission |
2024-06-20 |
關鍵字 Keywords |
散戶多空比、市場情緒指標、行為財務學、大盤報酬率、處置效果、DCC-GARCH模型 Individual Investor's Long/Short Ratio, Market Sentiment Indicator, Behavioral Finance, Market Index Returns, Disposition Effect, DCC-GARCH Model |
||
統計 Statistics |
本論文已被瀏覽 87 次,被下載 6 次 The thesis/dissertation has been browsed 87 times, has been downloaded 6 times. |
中文摘要 |
隨著開戶人數持續創新高,且開戶人口結構日益年輕化,散戶在市場中的比重逐漸增加。由於年輕投資者通常資金相對較少,散戶的市場影響力逐漸受到重視。本研究旨在識別一個能夠反映散戶對市場看法的相關指標,並探索其與市場表現之間的關聯性,為投資者提供一個能即時反映散戶情緒的指標。 本研究分析了2018年至2023年的每日數據,此資料囊括了中美貿易戰、2020年COVID-19等歷史事件,透過小型台指期貨所以算出來的散戶多空比與台灣加權指數之報酬率進行分析,由於散戶多空比是當日收盤後透過期貨交易所公布的資料,因此我們將台灣加權指數之報酬率分成三個不同時間軸去和散戶多空比做分析。透過DCC-GARCH模型,我們探討了其條件相關性和變異性。研究發現,散戶多空比與當日大盤報酬率呈現顯著的負相關且具有持續性。 此外,本研究透過手動記錄了小型台指期貨盤中的大單內外盤資料,以探討是否可以在當日盤中找出散戶多空比之相關信息。結果顯示,我們可以即時透過小型台指期貨的盤中內外盤成交明細來獲得散戶多空比的信息。這一發現使得投資者能夠更迅速地掌握散戶對市場的看法,為廣大投資者提供了一個實用的參考依據,從而提高投資勝率。 |
Abstract |
As the number of new accounts reaches record highs and these account holders increasingly skew younger, retail investors are growing in market prominence. Young investors often have less capital, highlighting the importance of understanding retail market influence. This study aims to identify an indicator reflective of retail investor sentiment and explore its correlation with market performance, providing investors with a real-time sentiment gauge. This research analyzed daily data from 2018 to 2023, encompassing events like the US-China trade war and the COVID-19 pandemic in 2020. It examines the relationship between the retail long-short ratio calculated from Mini-Taiwan Futures and the return rates of the Taiwan Weighted Index. Since the retail long-short ratio is published post-market by the futures exchange, we segmented the Taiwan Weighted Index return rates into three different time frames for analysis. Using the DCC-GARCH model, we investigated their conditional correlation and variability. Findings reveal a significant and persistent negative correlation between the retail long-short ratio and same-day market returns. Furthermore, by manually recording transaction data of large orders during trading hours for Mini-Taiwan Futures, this study explored the potential for discerning intraday retail sentiment. The results demonstrate that real-time retail long-short information can be gleaned from intraday transaction details of Mini-Taiwan Futures, enabling investors to quickly grasp retail market sentiment. This insight provides a practical reference for investors, potentially increasing their success rate. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3研究架構 3 第二章 文獻回顧 4 2.1散戶投資者與大盤報酬率關聯性文獻探討 4 2.2 DCC-GARCH模型應用文獻探討 6 第三章 研究方法與模型設定 9 3.1資料來源與分組介紹 9 3.1-1 資料選取與處理 9 3.1-2資料分組 10 3.2資料初步檢定 12 3.2-1常態分配檢定(Normality Test) 12 3.2-2序列相關檢定(Ljung-Box Q test) 13 3.2-3 ARCH檢定(ARCH test) 13 3.3實證模型設定 14 3.4診斷性檢定 17 第四章 實證結果與分析 18 4.1資料初步檢定結果 18 4.2DCC-GARCH模型結果 20 4.3診斷性檢定結果 29 4.4實證結果 30 第五章 結論與建議 36 參考文獻 37 |
參考文獻 References |
王韻怡, 池祥萱, & 周冠男. (2016). 行為財務學文獻回顧與展望: 台灣市場之研究. 經濟論文叢刊, 44(1), 1-55. 林昭賢, & 許溪南. (2008). 台灣期貨交易者與市場報酬之互動關係. 財務金融學刊, 16(3), 149-172. 徐中琦, & 黃劍鈺. (2010). 台灣散戶投資人與機構法人處分效果之研究: 考量資訊揭露, 股票風險與投資人情緒之實證結果. 商管科技季刊, 11(1), 109-138. 莊益源, 賴靖宜, 王雅晴, & 薛愛潔. (2014). 臺指選擇權非同步交易時段之資訊內涵. 臺大管理論叢. Bange, M. M. (2000). Do the portfolios of small investors reflect positive feedback trading?. Journal of Financial and Quantitative Analysis, 35(2), 239-255. Barber, B. M., Lee, Y. T., Liu, Y. J., & Odean, T. (2009). Just how much do individual investors lose by trading?. The Review of Financial Studies, 22(2), 609-632. Basher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235-247. Cho, J. H., & Parhizgari, A. M. (2009). East Asian financial contagion under DCC-GARCH. International Journal of Banking and Finance, 6(1), 17-30. Caporin, M., & McAleer, M. (2012). Do we really need both BEKK and DCC? A tale of two multivariate GARCH models. Journal of Economic Surveys, 26(4), 736-751. De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of political Economy, 98(4), 703-738.Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. De Bondt, W. F. (1998). A portrait of the individual investor. European economic review, 42(3-5), 831-844. Dajčman, S., & Festić, M. (2012). Interdependence between the Slovenian and European stock markets–A DCC-GARCH Analysis. Economic research-Ekonomska istraživanja, 25(2), 379-395 Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350. Fisher, K. L., & Statman, M. (2000). Investor sentiment and stock returns. Financial Analysts Journal, 56(2), 16-23. Hsieh, S. F. (2013). Individual and institutional herding and the impact on stock returns: Evidence from Taiwan stock market. International Review of Financial Analysis, 29, 175-188. Hou, Y., Li, S., & Wen, F. (2019). Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach. Energy Economics, 83, 119-143. Jones, P. M., & Olson, E. (2013). The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model. Economics Letters, 118(1), 33-37. Lee, M. C., Chiou, J. S., & Lin, C. M. (2006). A study of value-at-risk on portfolio in stock return using DCC multivariate GARCH. Applied Financial Economics Letters, 2(3), 183-188. Laurent, S., Rombouts, J. V., & Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934-955. Li, J. (2020). The momentum and reversal effects of investor sentiment on stock prices. The North American Journal of Economics and Finance, 54, 101263. Katzke, N. (2013). South African Sector Return Correlations: using DCC and ADCC Multivariate GARCH techniques to uncover the underlying dynamics. South African Sector Return Correlations: using DCC and ADCC Multivariate GARCH techniques to uncover the underlying dynamics, 10-17. Shu, P. G., Yeh, Y. H., Chiu, S. B., & Chen, H. C. (2005). Are Taiwanese individual investors reluctant to realize their losses?. Pacific-Basin Finance Journal, 13(2), 201-223. Weber, M., & Camerer, C. F. (1998). The disposition effect in securities trading: An experimental analysis. Journal of Economic Behavior & Organization, 33(2), 167-184. Yang, S. Y. (2005). A DCC analysis of international stock market correlations: the role of Japan on the Asian Four Tigers. Applied Financial Economics Letters, 1(2), 89-93. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |