論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-06-23
校外 Off-campus:開放下載的時間 available 2029-06-23
論文名稱 Title |
從小角度散射光譜重建高度仿射變形的三維微結構 Reconstruction of highly distorted 3D microstructures from 2D small-angle scattering spectra under affine deformation |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
81 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-06-13 |
繳交日期 Date of Submission |
2024-06-23 |
關鍵字 Keywords |
小角度中子散射、實球諧函數展開、對稱性、分子排列、軟凝態材料 small-angle neutron scattering, real spherical harmonics expansion, symmetry, affine deformation, soft condensed matter materials |
||
統計 Statistics |
本論文已被瀏覽 54 次,被下載 0 次 The thesis/dissertation has been browsed 54 times, has been downloaded 0 times. |
中文摘要 |
在軟凝態材料(soft condensed matter materials)中,分子在空間中的排列顯著影響其材料性質,如材料的強度和黏度。在眾多實驗工具中,小角度中子散射(small- angle neutron scattering, SANS)技術一直被用於探究軟凝態材料在分子尺度下的結構,而透過實球諧函數(real spherical harmonics, RSH)展開法分析不同樣品橫截面的 二維(2D) SANS光譜來重建三維(3D)異向性結構是一個方便的做法,但是當軟凝態材料受外場作用時,分子空間排列的原始對稱性被打破,導致需要更多的樣品橫截面2D SANS光譜參與分析和更複雜的計算才能完成重建三維結構。 為了解決上述的挑戰,我們提出一種可行的分析方法,利用對2D SANS光譜使用座標轉換的技巧,我們可以簡單的使用RSH展開法從實驗測量的2D SANS光譜中提取出3D扭曲結構,並透過高斯鏈(Gaussian chain)聚合物在仿射剪切變形(affine shear deformation)及仿射單軸拉伸變形(affine uniaxial tension deformation)下的研究進一步驗證了此方法的有效性,其中在不同變形條件下,數值與解析計算的結果之間有非常低的誤差。因此,我們的方法使SANS實驗能夠定量分析微觀結構的改變。此外,只要可以建構線性轉換矩陣,我們就可以利用此方法應用於經歷嚴重變形的軟凝態材料,其中不限制對稱性的種類。最後,提取的資訊為我們提供全面且深入的瞭解在嚴重扭曲下,材料原子核之間的結構變化。 |
Abstract |
In soft condensed matter materials, the spatial arrangement of molecular constituents significantly impacts their mechanical properties. Among existing experimental tools, small-angle neutron scattering (SANS) technique has been widely utilized for investigating materials structure at molecular levels. Conventionally, the real spherical harmonics (RSH) expansion serves as a convenient method to reconstruct three-dimensional (3D) anisotropic structures by analyzing the RSH components of two-dimensional (2D) SANS scattering spectra across different material cross-sections. However, when stress is introduced to materials, the original symmetry of the molecular spatial arrangements is broken, complicating the implementation of this method. To address the aforementioned challenge, we introduce a feasible analytical approach that utilizes the coordinate and rotation transformation of 2D SANS spectra on different sample planes. With the aid of this method, the 3D distorted structure can be extracted from the experimentally measured 2D SANS spectra using RSH expansion. The validity of this approach was further verified by the case study of Gaussian chain polymer undergoing affine shear deformation, where the consistent agreement between the numerical results and the analytical ground truth under different deformation conditions has been observed. Therefore, our proposed approach enables quantitative determination of the microscopic distortion from SANS experiments. As a result, the extracted information provides a comprehensive and profound understanding of how molecular arrangements influence the material properties under substantial deformation. |
目次 Table of Contents |
論文審定書i 誌謝ii 摘要iii Abstractiv 目錄v 圖目錄vii 表目錄ix 第一章 緒論1 第二章 背景知識與文獻回顧3 2.1小角度中子散射3 2.2實球諧函數展開法7 2.3 仿射變形9 2.4 二次型12 2.5 Gaussian chain13 2.6 擬合橢圓方程式13 第三章 實驗步驟15 3.1仿射變形後散射光譜的變化15 3.1.1 簡單剪切15 3.1.2 單軸拉伸17 3.1.2.1 拉伸軸沿z軸17 3.1.2.2 拉伸軸沿非z軸(方向已知)19 3.1.2.3 拉伸軸方向未知21 3.2 利用二次型定量分析應變23 3.2.1 簡單剪切23 3.2.2 單軸拉伸25 3.2.2.1 拉伸軸沿z軸25 3.2.2.2 拉伸軸方向未知27 3.3從2D散射光譜計算應變28 3.3.1簡單剪切31 3.3.2單軸拉伸33 3.3.2.1拉伸軸沿z軸33 3.3.2.2拉伸軸方向未知33 3.4 利用Debye function模擬散射光譜38 3.4.1簡單剪切38 3.4.2單軸拉伸40 3.4.2.1 拉伸軸沿z軸40 3.4.2.2 拉伸軸方向未知41 3.5 RSH展開等向性2D散射光譜42 第四章 結果與討論44 4.1 簡單剪切變形44 4.1.1 藉由光譜分佈計算剪應變的數值44 4.1.2 利用解析結果將系統回復至等向性狀態50 4.1.3 利用數值積分定量分析異向性散射光譜52 4.2 單軸拉伸變形(拉伸軸沿z軸)54 4.2.1 藉由光譜分佈計算拉伸應變的數值54 4.2.2 利用解析結果將系統回復至等向性狀態57 4.2.3 利用數值積分定量分析異向性散射光譜58 4.3 單軸拉伸變形(拉伸軸方向未知)60 4.3.1 藉由光譜分佈計算拉伸應變的數值60 4.3.2 利用解析結果將系統回復至等向性狀態64 4.3.3 利用數值積分定量分析異向性散射光譜65 第五章 結論68 參考文獻69 |
參考文獻 References |
[1] H. J. M. Hanley, G. P. Morriss, T. R. Welberry and D. J. Evans, "Shear induced anisotropy in two-dimensional liquids," Physica A: Statistical Mechanics and its Applications 149(3) (1988) 406-431. [2] H. J. M. Hanley, J. C. Rainwater and S. Hess, "Shear-induced angular dependence of the liquid pair correlation function," Physical Review A 36(4) (1987) 1795. [3] G. R. Huang, Y. Wang, B. Wu, Z. Wang, C. Do, G. S. Smith, W. Bras, L. Porcar, P. Falus and W. R. Chen, "Reconstruction of three-dimensional anisotropic structure from small-angle scattering experiments," Physical Review E 96(2) (2017) 022612. [4] M. H. Koch, P. Vachette and D. I. Svergun, "Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution," Quarterly Reviews of Biophysics 36(2) (2003) 147-227. [5] Y. Wei and M. J. Hore, "Characterizing polymer structure with small-angle neutron scattering: A Tutorial," Journal of Applied Physics 129(17) (2021) 171101. [6] I. A. Zaliznyak, J. M. Tranquada, Neutron scattering and its application to strongly correlated systems, in: Strongly Correlated Systems: Experimental Techniques, Springer Berlin Heidelberg, Berlin, (2014) 205-235. [7] R. Pynn, "Neutron scattering: a primer," Los Alamos Science 19 (1990) 1-31. [8] L. Koester, H. Rauch and E. Seymann, "Neutron scattering lengths: a survey of experimental data and methods," Atomic Data and Nuclear Data Tables 49(1) (1991) 65-120. [9] J. Dawidowski, J. R. Granada, J. R. Santisteban, F. Cantargi and L. A. R. Palomino, "Neutron scattering lengths and cross sections," Experimental Methods in the Physical Sciences 44 (2013) 471-528. [10] F. S. Varley, "Neutron scattering lengths and cross sectioirn," Neutron News 3(3) (1992) 29-37. [11] D. Blume and C. H. Greene, "Fermi pseudopotential approximation: Two particles under external confinement," Physical Review A 65(4) (2002) 043613. [12] C. M. Jeffries, Z. Pietras and D. I. Svergun, "The basics of small-angle neutron scattering (SANS for new users of structural biology)," EPJ Web of Conferences 236 (2020) 03001. [13] R. Fitzpatrick, Scattering Theory, in: Quantum Mechanics, World Scientific Publishing Company, (2015) 209-220. [14] R. G. Barrera, G. A. Estevez and J. Giraldo, "Vector spherical harmonics and their application to magnetostatics," European Journal of Physics 6(4) (1985) 287. [15] M. Poletti, "Unified description of ambisonics using real and complex spherical harmonics," Ambisonics Symp 1(1) (2009) 2-2. [16] Z. Wang, C. N. Lam, W. R. Chen, W. Wang, J. Liu, Y. Liu, L. Porcar, C. B. Stanley, Z. Zhao, K. Hong and Y. Wang, "Fingerprinting molecular relaxation in deformed polymers," Physical Review X 7(3) (2017) 031003. [17] G. Bebis, M. Georgiopoulos, N. da Vitoria Lobo and M. Shah, "Learning affine transformations," Pattern Recognition 32(10) (1999) 1783-1799. [18] V. M. Segal, "Materials processing by simple shear," Materials Science and Engineering: A 197(2) (1995) 157-164. [19] V. Vahapoglu, S. Karadeniz and I. Yazici, "Uniaxial tensile testing of rubber-like materials," Experimental Techniques 35 (2011) 17-23. [20] K. Yashiro, T. Ito and Y. Tomita, "Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension," International Journal of Mechanical Sciences 45(11) (2003) 1863-1876. [21] H. Zhao and E. S. Shaqfeh, "The dynamics of a vesicle in simple shear flow," Journal of Fluid Mechanics 674 (2011) 578-604. [22] G. Schubert and P. Harrison, "Large-strain behaviour of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations," Polymer Testing 42 (2015) 122-134. [23] S. K. Melly, L. Liu, Y. Liu and J. Leng, "Improved Carroll's hyperelastic model considering compressibility and its finite element implementation," Acta Mechanica Sinica 37 (2021) 785-796. [24] G. B. Thurston, "Exact and approximate eigenvalues and intrinsic functions for the Gaussian chain theory," Polymer 15(9) (1974) 569-572. [25] G. R. Huang, Y. Wang, C. Do, L. Porcar, Y. Shinohara, T. Egami and W. R. Chen, "Determining gyration tensor of orienting macromolecules through their scattering signature," The Journal of Physical Chemistry Letters 10(14) (2019) 3978-3984. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2029-06-23 校外 Off-campus:開放下載的時間 available 2029-06-23 您的 IP(校外) 位址是 18.221.185.110 現在時間是 2025-04-28 論文校外開放下載的時間是 2029-06-23 Your IP address is 18.221.185.110 The current date is 2025-04-28 This thesis will be available to you on 2029-06-23. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |