Responsive image
博碩士論文 etd-0526122-205053 詳細資訊
Title page for etd-0526122-205053
論文名稱
Title
利用氣相層析質譜儀與液相層析串聯質譜儀建立未衍生化二甲雙胍與乙醯胺酚之分析研究
Analyses of non-derivatized metformin and acetaminophen using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with triple quadrupole mass spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-06-17
繳交日期
Date of Submission
2022-06-26
關鍵字
Keywords
二甲雙胍、乙醯胺酚、氣相層析質譜儀、液相層析串聯質譜儀、未衍生化、環境水體
Metformin, Acetaminophen, GC/MS, LC/MS/MS, Non-derivatized, Environmental water
統計
Statistics
本論文已被瀏覽 124 次,被下載 65
The thesis/dissertation has been browsed 124 times, has been downloaded 65 times.
中文摘要
隨著時代的變遷,人們追求生活的便利性,進而促使經濟快速發展,伴隨而來的是環境污染,而且變成世人不得不面對的問題,然而還有一些污染物是沒被大眾察覺及看見,卻忽略了它所帶來給環境和人體的影響及危害,那就是新興污染物。所謂新興污染物,其實都存在你我生活中,本研究以藥品和個人護理產品(PPCPs)類別中的糖尿病用藥二甲雙胍(Metformin)和止痛用藥乙醯胺酚(Acetaminophen)為目標污染物,使用氣相層析質譜儀(GC/MS)和液相層析串聯質譜儀(LC/MS/MS)分析,找尋無須衍生化及萃取的前處理方式,樣品僅簡單過濾即進行儀器分析並能達到ppb濃度分析等級。本研究主軸主要分為四個部分:首先是蒐集相關的文獻及資料;其次是使用儀器針對藥品進行定性分析,並透過不同文獻及公開資料庫交叉比對,確認定性的結果;第三部分則針對分析方法進行深度優化,包括層析條件、質譜的離子源和化合物的個別優化;最後則依照環檢所公告的環境檢驗方法偵測極限測定指引,得到Metformin在GC/MS的方法偵測極限是12.95 ppm,在LC/MS/MS則是0.30 ppb;而Acetaminophen在GC/MS的方法偵測極限是1.65 ppm,在LC/MS/MS則是0.88 ppb。使用標準品建立檢量線後,Metformin與Acetaminophen在GC/MS的線性R2分別是0.9996及0.9998;Metformin與Acetaminophen在LC/MS/MS的線性R2則是0.9994和0.9998,確認兩種分析物皆可經由GC/MS和LC/MS/MS得到極佳線性結果,且本研究亦採集環境水體(高屏溪原水、澄清湖原水、淨水廠進水)套用此檢量線進行測試,雖然結果指出環境水體中不存在這些藥品濃度,但額外加藥可有效檢出且雖然有基質干擾,仍可藉由調整特徵峰滯留時間的方式來避開此問題。整體而言,本研究確認Metformin和Acetaminophen皆可藉由GC/MS和LC/MS/MS的分析,在定性及定量上得到高準確性及高精密性,其中又以Metformin具有較佳親水性(辛醇水分配常數,log Kow= -2.64),因此非常適合使用LC/MS/MS進行分析。
Abstract
With the changes of the times, people pursue a convenient life and promote the rapid development of the economy. Unfortunately, environmental pollution has become a problem everyone has to face. Certain pollutants have not been carefully noticed, ignoring their negative impacts on the environment and public health. One typical example is the contaminant of emerging concern(CECs). With limited attention and investigation, CECs exist indeed in our lives. The objective of this study is to investigate the feasibility of analyzing the diabetes drug, metformin, and the analgesic drug, acetaminophen, the two most widely used pharmaceuticals and personal care products (PPCPs), by using the gas chromatography coupled with mass spectrometry (GC/MS) and liquid chromatography coupled with triple quadrupole mass spectrometry (LC/MS/MS) without extraction and derivatization. The sample just needs filtration before the instrumental analysis to reach a detection limit in a ppb-level range. There are four stages in this study. First, relevant literature and data were collected and reviewed. Next, two instruments were operated for the qualitative analyses of two compounds to confirm the results with cross-comparison of different literature and public databases. Thirdly, the analytical methods such as the parameters used for separation and detection were optimized. Finally, the experiment method detection limits (MDL) of two compounds were determined following the standard method by the National Institute of Environmental Analysis (NIEA). The MDL of metformin in GC/MS was 12.95 ppm, while the MDL in LC/MS/MS was 0.30 ppb. The MDL of acetaminophen in GC/MS was 1.65 ppm, as that by LC/MS/MS is 0.88 ppb. The coefficients of determination of metformin and acetaminophen were 0.9996 and 0.9998 in GC/MS, and 0.9994 and 0.9998 in LC/MS/MS, respectively. Both GC/MS and LC/MS/MS exhibited excellent linearity for the relationships between the concentration and response. The field samples from Gaoping River, Cheng Ching Lake, and an influent sample of a drinking water treatment plant were collected as well as applied to test the established analytical methods. Although the presence of two compounds in the field samples were not detected, injecting standards in the field samples were successfully detected. The matrix interference occurred but could be avoided by optimization of the methods (adjustment of the retention times). In conclusion, this study confirms that both metformin and acetaminophen can be qualitatively and quantitatively analyzed by using GC/MS and LC/MS/MS without derivatization, as sufficiently high accuracy and precision levels are still achievable. Moreover, metformin is more hydrophilic (octanol-water partition coefficient, log Kow= -2.64) than acetaminophen, resulting in it more suitable for the LC/MS/MS analysis.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iv
目錄 vii
圖目錄 xi
表目錄 xiv
第一章 前言 1
1.1 研究起緣 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 新興污染物 4
2.1.1 定義 4
2.1.2 緣起 5
2.1.3 風險 6
2.1.4 現有處理程序及相關技術 7
2.2 藥物及個人保健用品PPCPs 8
2.2.1 來源、流布及列管 8
2.2.2 藥品Metformin 11
2.2.3 藥品Acetaminophen 12
2.2.4 藥品Metformin與Acetaminophen使用情形 13
2.3 Metformin和Acetaminophen分析方法 14
2.3.1 層析分離技術 14
2.3.2 質譜偵測技術 16
2.3.3 氣相層析質譜儀(GC/MS) 19
2.3.4 液相層析串聯質譜儀(LC/MS/MS) 23
第三章 研究方法與設備 29
3.1 研究方法 29
3.2 研究設備與器材 30
3.2.1 儀器設備 30
3.2.2 實驗器材 30
3.3 研究藥品與溶劑 31
3.4 標準品/檢量線配置 31
3.5 初始儀器參數 35
3.5.1 GC/MS初始儀器參數 35
3.5.2 LC/MS/MS初始儀器參數 36
3.6 定性方法 37
3.7 方法偵測極限 37
3.8 定量方法 38
3.9 環境水體場址選定與說明 38
第四章 結果與討論 40
4.1 定性分析 40
4.1.1 Metformin定性比對 40
4.1.1.1 GC/MS結果 40
4.1.1.2 LC/MS/MS結果 42
4.1.2 Acetaminophen定性比對 44
4.1.2.1 GC/MS結果 44
4.1.2.2 LC/MS/MS結果 45
4.2 GC/MS方法優化建立 48
4.2.1 層析優化 48
4.2.1.1 移動相的選擇 48
4.2.1.2 汽化管(Liner)的選擇 48
4.2.1.3 樣品溶劑的選擇 48
4.2.1.4 管柱的選擇 48
4.2.1.5 柱溫箱等溫度的優化 49
4.2.1.6 柱溫箱起始溫度的優化 51
4.2.1.7 柱溫箱升溫速率梯度的優化 53
4.2.1.8 注射口溫度的優化 55
4.2.2 質譜優化 56
4.2.2.1 MS Source的溫度選擇 56
4.2.2.2 MS Quadrupole的溫度選擇 56
4.2.3 GC/MS優化後Metformin與Acetaminophen的SIM參數 57
4.3 LC/MS/MS方法優化建立 58
4.3.1 層析優化 58
4.3.1.1 移動相的選擇 58
4.3.1.2 管柱的選擇 58
4.3.1.3 流速的選擇 58
4.3.1.4 溫度的選擇 58
4.3.1.5 緩衝溶液(Buffer)的選擇 59
4.3.1.6 酸鹼值的選擇 59
4.3.1.7 移動相梯度(Gradient)的優化 59
4.3.2 離子源優化 62
4.3.2.1 Nebulizer pressure的優化 62
4.3.2.2 Drying gas flow的優化 63
4.3.2.3 Drying gas temperature的優化 64
4.3.3 化合物質譜優化 65
4.3.3.1 Collision energy的優化 65
4.3.3.2 Fragmentor的優化 66
4.3.4 LC/MS/MS優化後Metformin與Acetaminophen的SIM參數 68
4.4 方法偵測極限與進行儀器分析的檢量線 69
4.4.1 方法偵測極限 69
4.4.2 GC/MS進行儀器分析的檢量線 70
4.4.3 LC/MS/MS進行儀器分析的檢量線 71
4.5 環境水體分析結果 72
4.5.1 高屏溪水分析結果 72
4.5.2 澄清湖水分析結果 74
4.5.3 淨水廠進水分析結果 76
第五章 結論與建議 79
5.1 結論 79
5.2 建議與未來方向 81
參考文獻 82
參考文獻 References
Agilent. (2012 ). LC and LC/MS your essential resource for columns & supplies
Agilent. (2022). Recommended GC columns for USP phase classification
AgilentTechnologies. (2016a). GC and GC/MS Your Essential Resource for Columns & Supplies.
AgilentTechnologies. (2016b). The LC Handbook Guide to LC Columns and Method Development.
AgilentTechnologies. (2017). Agilent MassHunter Optimizer Automated MS Method Development Software for K6460 and K6420 Triple Quad MS.
al, D. S. e. (1995). J Sch Pharm. In.
Alighardashi, A., Rashidi, A., Neshat, A. A., & Golsefatan, H. (2014). Environmental risk assessment of selected antibiotics in Iran. Iranian Journal of Health, Safety and Environment, 1(3), 132-137.
Clever, H. L. (1968). The ion product constant of water: Thermodynamics of water ionization. Journal of Chemical Education, 45(4), 231.
Dempster, A. (1918). A new method of positive ray analysis. Physical Review, 11(4), 316.
EPA, U. (2012). Emerging contaminants-perfluorooctane sulfonate (PFOS) and perflu-orooctanoic acid (PFOA). Emerging contaminants fact sheet–PFOS and PFOA.
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64-71.
Harris, D. C. (2013). Exploring Chemical Analysis.
Health2Sync. (2021). 降血糖藥Metformin-認識糖尿病藥物.
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology, 36(6), 1202-1211.
Kot-Wasik, A., Jakimska, A., & Śliwka-Kaszyńska, M. (2016). Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environmental monitoring and assessment, 188(12), 1-13.
Liao, Q., Xie, Z., Pan, B., Zhu, C., Yao, M., Xu, X., & Wan, J. (2008). LC–MS–MS simultaneous determination of paracetamol, pseudoephedrine and chlorpheniramine in human plasma: application to a pharmacokinetic study. Chromatographia, 67(9), 687-694.
McCurry, J. (2012). Converting helium carrier gas GC methods nitrogen and hydrogen. Agilent.
Mohamed, D., Elshahed, M. S., Nasr, T., Aboutaleb, N., & Zakaria, O. (2019). Novel LC–MS/MS method for analysis of metformin and canagliflozin in human plasma: application to a pharmacokinetic study. BMC chemistry, 13(1), 1-11.
Noguera-Oviedo, K., & Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of hazardous materials, 316, 242-251.
Phenomenex. (2013). Enhance Resolution For Polymer Analysis
Riddick, J., Bunger, W., & Sakano, T. (1985). Techniques of chemistry, organic solvents (Vol. 2). John Wiley and Sons: New York, NY.
Serjeant, E. P., & Dempsey, B. (1979). Ionisation constants of organic acids in aqueous solution. IUPAC chemical data series, 23, 160-190.
Tahamtan, T., Akhgari, M., Mousavi, Z., & Jahanbakhsh, A. (2020). Application of UHPLC and GC/MS for Detection of Hidden Drugs in Traditional Hand-Made Herbal Slimming Products. Jundishapur Journal of Natural Pharmaceutical Products, 15(3).
TSMS. (2016). 質譜分析技術原理與應用.
US-EPA. (2008). Draft white paper: aquatic life criteria for contaminants of emerging concern-part I: general challenges and recommendations. In: United States Environmental Protection Agency, OW/ORD Emerging Contaminants ….
WebBook, N. C. (2014). Acetaminophen Mass Spectrum.
劉澤融 (2016)。吸附現象對奈米薄膜去除水中新興污染物之影響。
安捷倫科技 (2020)。質譜教育訓練教材。
安捷倫科技 (2021)。層析儀器教育訓練教材。
廖嘉偉 (2017)。以活性碳吸附技術處理染缸廢水。
廖紋藺 (2002)。石化工業廢水二級處理出流水再生利用技術 之可行性研究。
張育維 (2019)。Metformin在大腸癌細胞的抗藥性機制。
林孝謙 (2021)。新興污染物及其轉換產物於生活污水與受體河川水體之流布。
林建良、許惠恒、沈宜靜 (2004)。二甲雙胍類降血糖藥物Metformin: 過去、現在與未來。Practical Diabetes International, 21, 116.
楊仕宇 (2016)。結合生物濾床系統及活性碳純化養豬廢水醱酵沼氣之可行性探討。
楊培銘 (2007)。不當用藥 小心傷肝。
江政傑 (2015)。新興污染物於台灣河川水體與海洋環境中殘留量分布及來源特性探討之研究。
湯松陵、李蜀平、曾中龍、葉明功 (2012)。台灣民眾對家庭廢舊藥品之認知、行為與態度。 藥學雜誌,111。
王根樹 (2010)。飲用水水源及水質中新興污染物對人體健康風險評估之研究計畫 (1/4)。行政院環境保護署專案計畫,計畫編號: EPA-U1J1-02-101 (2010-2013)。
環境檢驗所 (2005a)。環境檢驗方法偵測極限測定指引。
環境檢驗所 (2005b)。環境檢驗檢量線製備及查核指引。
環境檢驗所 (2013)。水中新興污染物檢測方法─固相萃取與高效液相層析/串聯式質譜儀法。
社團法人中華民國糖尿病衛教學會 (2019)。臺灣糖尿病年鑑2019第2型糖尿病。
薛志宏 (2017)。新興污染物與飲用水。
藍韋盛 (2012)。雙氧水對化學沉降處理高濃度含硼廢水影響之研究。
行政院環境保護署 (2017)。飲用水水質標準。
行政院環境保護署水保處 (2022)。環保署因應氣候變遷修正發布飲用水水質標準,確保飲用水安全及品質。
衛生福利部中央健康環保署 (2020)。藥品使用量分析。
衛生福利部全民健康保險會 (2021)。110年全民健康保險醫療給付費用總額協商參考指標要覽。
邱千慈 (2016)。止痛藥物簡介。
邱懷嫻 (2011)。養豬廢水處理場抗生素類新興污染物流布。
陳俊綺 (2019)。石化業甲醛製程廢水回收再利用技術之探討。
陳建銘、陳重男 (2001)。生物薄膜程序處理合成生活污水。
陳澔琳 (2018)。國家重點實驗室-城大海洋實驗室,追蹤新興毒物化解生態危機。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code