Responsive image
博碩士論文 etd-0601121-144149 詳細資訊
Title page for etd-0601121-144149
論文名稱
Title
以社會放大的訊息機制 探討台灣不同媒體平台對新冠肺炎的風險呈現
The Social Amplification of Risk: A Study of Media Representation of COVID-19 in Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-05-25
繳交日期
Date of Submission
2021-07-01
關鍵字
Keywords
風險的社會放大框架、社會放大的訊息機制、風險傳播、新聞價值、媒體框架
Social Amplification of Risk, Informational Mechanisms of Social Amplification, Risk Communication, News Values, Media Framing
統計
Statistics
本論文已被瀏覽 293 次,被下載 95
The thesis/dissertation has been browsed 293 times, has been downloaded 95 times.
中文摘要
2020 年新冠肺炎席捲全球,台灣社會充斥著各種不同的媒體訊息,可以發現不同媒體平台在報導上似乎展現出不同的風險樣貌。本研究欲探討哪些因素造成媒體不同的風險呈現?而這些內容是否隨著風險階段的進行而發生改變?
本研究蒐集政府新聞稿、傳統媒體、PTT 社群分享新聞作為不同媒體的研究標的,透過社會放大的訊息機制評量不同媒體間風險放大程度,並以新聞價值及媒體框架探討不同媒體間風險呈現差異的原因。
研究結果顯示,新聞價值可以作為解釋政府新聞稿較其他媒體在風險呈現上較小的原因,但套用在傳統媒體及社群媒體的比較上卻有侷限性,反映出新聞價值於不同媒體平台上有不同評價標準。媒體框架中,政府新聞稿較其他媒體更傾
向使用降低風險的框架,而傳統媒體及社群媒體則偏向使用風險放大的框架,且兩者間具有連動性。最後在階段比較上,大部分新聞價值及媒體框架的使用與大眾恐慌的趨勢相呼應,皆隨著階段逐步下降,強化以新聞價值及媒體框架探討媒體風險放大的基礎。
Abstract
In 2020, COVID-19 epidemic spread everywhere. Taiwanese society had flooded with various media messages. It can be found that different media platforms seem to show different risk profiles in reporting, which has caused the public to become more complicated in preparing for the epidemic, and
indirectly affects the prevention work of government. This study intends to explore what factors cause differences in the presentation of risks between different media. Whether it is affected by different epidemic stage?
This study collects texts from three different media platforms: Taiwanese government press releases, traditional media, and PTT network news sharing. Use the socially amplified information mechanism as a benchmark for evaluating the degree of risk amplification among different media and explore the reason of different amplification presentation by use news value and media framework.
According to the research results, news value can indeed explain why government press releases are less risky than other media. However, it has limitations when applied to traditional media and social media, reflecting that news value seem to have different evaluation on different media platforms. Among the media frameworks, government press releases are more inclined to use risk reduction frameworks than other media, while traditional media and social media prefer to use risk amplification frameworks, and the two seem to be connected. Finally, in terms of stage comparison, most of the news value and the media frameworks correspond to the trend of public panic, which gradually declines with the stage, strengthening the basis for discussing risk amplification based on news value and media frameworks.
目次 Table of Contents
論文審定書………………………………………………….... i
謝誌…………………………….…………………………….. ii
摘要……………………………………………………...……iii
Abstract…………………………………………………..….. iv
第一章 緒論…………………………………....……….…...…1
第一節 研究背景與動機……………………….........….….1
第二節 研究目的…………………..……………….........….4
第三節 研究問題………………………………..….……….5
第二章 文獻探討……………………………………….…...…6
第一節 疫情風險傳播……………………………..….…….6
一、充滿風險的社會……………………………...……..6
二、風險與疫情大流行…………………………..…...…7
三、風險傳播與疫情………………………...…….…….9
第二節 風險傳播與媒體訊息………………………..……11
一、風險傳播中的媒體角色……………...………..…..11
二、風險的社會放大框架…………………....….……..14
三、網路社群下的風險社會放大…………….....…….17
第三節 疫情訊息在各媒體平台產製過程及對風險呈現的
影響……............................................................…22
一、新聞內容的決定與新聞價值...…………….….….22
二、社群平台訊息分享行為與新聞價值…….....……25
三、媒體框架及風險象徵意義…………....….……….26
第三章 研究方法……………………………………...……..30
第一節 台灣新冠肺炎第一波疫情與時間軸說明...……30
第二節 新聞報導內容分析…………..……...……………34
第三節 研究架構……………………..……………………38
第四節 分析單位與類目建構………………….…………39
第五節 資料分析與信度檢驗………………….…………44
第四章 分析結果………………………………………...…..46
第一節 台灣新冠肺炎疫情文本資料分析…………..…..46
一、新聞文本報導量分析…………………..……....….47
二、新聞文本資料來源分析………………….......……49
三、新聞文本新聞社分析………………..…...……..…50
第二節 資訊機制中爭議程度、戲劇化內容類目分析...51
一、衝突類目分析……………………………………….52
二、危險類目分析…………………...……..……………54
三、疫情擴大可能類目分析………………..…..………55
四、聳動標題類目分析…………………..……………..56
五、聳動內文類目分析…………………..……………..57
六、人格化類目分析…………………………..………..59
七、情緒化類目分析…………………………..………..60
八、爭議程度及戲劇化內容類目分析 小結……….....61
第三節 資訊機制中媒體框架資料分析………………...62
一、後果框架類目分析…………………..…..…………63
二、行動框架類目分析………………………..……..…64
三、新證據框架類目分析………………………......…..65
四、保證框架類目分析………………………..………..67
五、不確定性框架類目分析……………………..……..68
六、衝突框架類目分析…………………………..……..70
七、媒體框架類目分析 小結……………………...…....71
第四節 不同時間點媒體風險放大效果差異分析…...…72
一、衝突、戲劇化內容三階段分析………………..…..72
二、媒體框架三階段分析……………………......……..83
第五章 討論與建議…………………………………...……..94
第一節 重要發現與討論…………………………..………94
一、新聞價值作為媒體風險放大的解釋原因……..….94
二、不同媒體在風險放大要素的使用傾向討論…...…96
三、各媒體疫情框架呈現差異……………..........……..98
四、不同階段對媒體風險放大影響…………......……..99
五、風險知識依賴專家系統……………….......…..…..101
第二節 研究貢獻與實務建議…………………..………..102
一、拓展風險的社會放大框架應用……………...…...102
二、從新聞價值到分享價值………………………...…103
三、時間對於媒體風險放大的影響……………..……103
四、為政府防疫提供參考…………………...…………104
五、對傳統媒體的建議…………………...……………104
六、對網路使用者的警惕………………......………....105
第三節 研究限制與未來研究建議…..………….....…….106
一、抽樣代表性………………………...………………106
二、風險放大程度的解釋說服力……………….....…106
三、研究結果對後續疫情發展的應用………….……107
四、大眾風險感知與媒體風險放大的連動關係……108
五、拓展網路情境中其他媒體風險放大研究………108

參考文獻…………………………………………………….110
中文文獻……………….....…………...……….………....110
英文文獻…………………………........…….……………113
附錄………………………………………………………….121

圖目錄
圖2-1 風險的社會放大及縮減過程………….....…........……15
圖2-2 在台灣曾經使用過網路的人口調查……...…...……..18
圖2-3 2018年新聞來源與各媒體評價圖….....………......…20
圖2-4 2012-2016年新聞資訊來源統計圖………….....….…20
圖3-1 Google Trend搜尋趨勢圖 關鍵字:肺炎…...….….31
圖3-2 台灣民眾新冠肺炎確診人數統計…………...…...…..31
圖3-3 研究架構…………….……………………………….....38
圖4-1 各媒體疫情新聞報導量每月比例趨勢圖…….....…..47
圖4-2 資料來源比例圖………………………....………...…..49
圖4-3 各媒體新聞來源分布圖………...................……….....50
圖4-4 PTT分享新聞文本新聞社數量長條圖……….…..….51

表目錄
表3-1 爭議程度、戲劇化內容類目表…….......………..……41
表3-2 疫情新聞框架類目表……………………....……….….42
表3-3 消息來源類目表………………………....………….….43
表3-4 各類目信度檢驗總表……………………....……….….45
表4-1 各媒體平台疫情新聞報導數量占比(新聞數量)...47
表4-2 衝突和戲劇化內容類目分析總表…………...….…….52
表4-3 媒體框架統計總表………………....…………….…….62
表4-4 衝突價值三階段分析……………….......…….…….…74
表4-5 危險價值三階段分析……………………...........……..75
表4-6 疫情擴大可能價值三階段分析…………….…...…….77
表4-7 聳動標題三階段分析…………………....………….…78
表4-8 聳動內文三階段分析……………………….......……..79
表4-9 人格化價值三階段分析………………………...……..81
表4-10 情緒化價值三階段分析……………………...………82
表4-11 後果框架三階段分析…………………...…………....84
表4-12 行動框架三階段分析………………………...……....86
表4-13 新證據框架三階段分析………………………...……88
表4-14 保證框架三階段分析…………………………...……89
表4-15 不確定性框架三階段分析………………..………....91
表4-16 衝突框架三階段分析………………......…………....92

參考文獻 References
中文文獻
網路資訊
疫情下的社群傳染病。網路溫度計。取自 https://dailyview.tw/covid19
你常看新聞嗎?探討台灣民眾觀看新聞之習慣與問題。台灣傳播調查資料庫。取自 http://www.crctaiwan.nctu.edu.tw/ResultsShow_detail.asp?RS_ID=105
2019台灣網路報告。取自 https://report.twnic.tw/2019/index.html
毛遠揚(2020年3月6日)。肺炎疫情:衛生紙為何成為搶購物資?。BBC英倫網。取自 https://www.bbc.com/ukchina/trad/51770987
何蕙安(2020年4月26日)新冠肺炎的不實訊息與政策宣導。台灣事實查核中心。取自 https://tfc-taiwan.org.tw/articles/3546
林韋伶(2020年1月22日)。歷史總會重演?SARS重創全球經濟1.2兆 這些行業首當其衝。今周刊。取自 https://reurl.cc/VXzN8Y
林依榕(2020年4月16日)。PTT「護國神文」讓我國防疫領先全球 原PO:感謝台灣沒讓我步上中國死鍊後塵的第9人。今周刊。取自 https://reurl.cc/r83QrN
林耀盛(2020年2月6日)。恐懼在瘟疫蔓延時。思想坦克,取自 https://www.voicettank.org/single-post/2020/02/06/20020602
林祖偉(2020年4月3日)。肺炎疫情:新冠病毒到底哪來的?科學界的幾種說法。BBC NEWS中文。取自 https://www.bbc.com/zhongwen/trad/science-52133480
林憬屏(2020年8月28日)。不遵守防疫封鎖規範 南非逾28萬人遭警方逮捕。中央社。取自https://www.cna.com.tw/news/aopl/202008280337.aspx
高伯任(2020年2月3日)。武漢肺炎:社群媒體時代下的第一個冠狀病毒。Saydigi-Tech。取自 https://saydigi-tech.com/2020/09/29603.html
張庭瑋(2020年2月17日)。社群媒體上防疫獎訊息滿天飛,恐懼蔓延比病毒還快。商業週刊。取自 https://www.businessweekly.com.tw/international/blog/3001763
張英華、馮兆音、鄧波兒(2020年5月28日)。新冠病毒:遭遇疫情歧視的國亞裔何去何從。BBC NEWS中文。取自 https://www.bbc.com/zhongwen/trad/world-52824216
黃衍方(2020年4月16日)。【武漢肺炎】台灣如何搶先掌握疫情?指揮中心透漏消息來自PTT。上報。取自https://www.upmedia.mg/news_info.php?SerialNo=85451
新聞稿(2020年2月3日)。口罩販售實名制2月6日上路,民眾可持健保卡購買。衛生福利部疾病管制署新聞稿。取自 https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=4SQmkbT4pXkirVMKhzySKA
勞拉·瓊斯、大衛·布朗、丹尼爾·帕倫博(2020年3月5日)。肺炎疫情:八張圖表說明新冠病毒如何衝擊全球經濟。BBC NEWS中文。取自 https://www.bbc.com/zhongwen/trad/business-51731992
蔡芃敏(2020年2月7日)。衛生紙搶購潮誤會大了 經部:與口罩原料不一樣。中央社。取自 https://reurl.cc/x0a6EV
翟思嘉、吳柏緯(2020年9月28日)。中國擴大接種武漢肺炎試驗疫苗 紐時:存在未知風險。中央社。取自https://www.cna.com.tw/news/firstnews/202009280182.aspx
Rousseau(2009年8月19日)。網路救災的可能性 「PTT鄉民救災團」的誕生。數位時代轉自PeoPo公民新聞。取自 https://www.bnext.com.tw/article/2244/BN-ARTICLE-2244
期刊論文
王石番(民78)。傳播內容分析法: 理論與實證. 台北: 幼獅文化。
林思平(民106)。網路八卦與真理政治:批踢踢八卦板之閱聽人研究。 新聞學研究,133,135-188。
黃浩榮(民92)。風險社會下的大眾媒體:公共新聞學作為重構策略。國家發展研究,3(1),99-147。
陳瑞芸、馮國豪(民97)。風險傳播與管理理論與實務落差-以健康食品新聞報導為例。興國學報,9,59-75。
陳憶寧(民107)。傳統媒體與社群媒體上呈現的食安危機比較:頂新餿水油事件的個案研究。傳播與社會學刊,45,47-89。
蔡篤堅(民94)。疫病敘事, 國家體制與認同形塑-由疫病防治經驗展望台灣民主的未來趨勢。台灣國際研究季刊,1,119-146。
鄭怡世(民103) 。隱沒的追求正義論述: 1987—2007 年報紙再現社工員實務行動的框架分析. 社會政策與社會工作學刊,18(2),73-120。
潘忠黨(民95)。架構分析:一個亟需理論澄清的領域。傳播與社會學刊,1,17-46。
謝君蔚、徐美苓(民100)。媒體再現科技發展與風險的框架與演變:以基因改造食品新聞為例。中華傳播學刊,20,143-179。

英文文獻
網路資訊
Digital News Report.(2020) Retrieved from http://www.digitalnewsreport.org/
Google Trend.(2020) Retrieved from https://trends.google.com.tw/trends/?geo=TW
International Telecommunication Union.(2020) Retrieved from https://www.itu.int/en/Pages/default.aspx
期刊論文
Abraham, T. (2011). Lessons from the pandemic: the need for new tools for risk and outbreak communication. Emerging Health Threats Journal, 4(1), 7160.
Adams, W. C. (1992). The role of media relations in risk communication. Public Relations Quarterly, 37(4), 28.
Allern, S. (2002). Journalistic and commercial news values. Nordicom Review, 23(1-2), 137-152.
Araujo, T., & van der Meer, T. G. (2020). News values on social media: Exploring what drives peaks in user activity about organizations on Twitter. Journalism, 21(5), 633-651.
Bakir, V. (2006). Policy agenda setting and risk communication: Greenpeace, Shell, and issues of trust. Harvard International Journal of Press/Politics, 11(3), 67-88.
Barton, L. (2001). Crisis in organizations II. Cincinnati, OH: South-Western College Publishing.
Berelson, B. (1952). Content analysis in communication research. Glencoe, IL: Free Press.
Beck, U. (1992). From industrial society to the risk society: Questions of survival, social structure and ecological enlightenment. Theory, Culture & Society, 9(1), 97-123.
Beck, T., Demirgüç-Kunt, A., & Levine, R. (1999). A new database on financial development and structure. The World Bank.
Bohensky, E. L., & Leitch, A. M. (2014). Framing the flood: a media analysis of themes of resilience in the 2011 Brisbane flood. Regional Environmental Change, 14(2), 475-488.
Caple, H., & Bednarek, M. (2016). Rethinking news values: What a discursive approach can tell us about the construction of news discourse and news photography. Journalism, 17(4), 435-455.
Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak. PloS one, 5(11), e14118.
Chung, I. J. (2011). Social amplification of risk in the Internet environment. Risk Analysis: An International Journal, 31(12), 1883-1896.
Chung, J. B., & Yun, G. W. (2013). Media and social amplification of risk: BSE and H1N1 cases in South Korea. Disaster Prevention and Management: An International Journal, 22, 148–159.
Covello, V. T., Slovic, P., & Von Winterfeldt, D. (1986). Risk communication: A review of the literature. Risk Abstracts, 3, 171-182.
Cottle, S. (1998). Ulrich Beck, Risk Society'and the Media: A Catastrophic View?. European Journal of Communication, 13(1), 5-32.
Covello, V. T., Peters, R. G., Wojtecki, J. G., & Hyde, R. C. (2001). Risk communication, the West Nile virus epidemic, and bioterrorism: responding to the commnication challenges posed by the intentional or unintentional release of a pathogen in an urban setting. Journal of Urban Health, 78(2), 382-391.
Comrie, E. L., Burns, C., Coulson, A. B., Quigley, J., & Quigley, K. F. (2019). Rationalising the use of Twitter by official organisations during risk events: Operationalising the social amplification of risk framework through causal loop diagrams. European Journal of Operational Research, 272(2), 792-801.
Druckman, J. N. (2001). The implications of framing effects for citizen competence. Political Behavior, 23(3), 225-256.
Druckman, J. N., & Nelson, K. R. (2003). Framing and deliberation: How citizens' conversations limit elite influence. American Journal of Political Science, 47(4), 729-745.
Eberhard, W. B. (1982). ‘News value’treatments are far from consistent among newswriting texts. The Journalism Educator, 37(1), 9-50.
Eilders, C. (2006). News factors and news decisions: Theoretical and methodological advances in Germany. Communications, 31(1), 5-24.
Fellenor, J., Barnett, J., Potter, C., Urquhart, J., Mumford, J. D., & Quine, C. P. (2018). The social amplification of risk on Twitter: The case of ash dieback disease in the United Kingdom. Journal of Risk Research, 21(10), 1163-1183.
Fischhoff, B., Kadvany, J., & Kadvany, J. D. (2011). Risk: A very short introduction. New York, NY: Oxford University Press.
Frewer, L. (2004). The public and effective risk communication. Toxicology Letters, 149(1-3), 391-397.
Galtung, J., & Ruge, M. H. (1965). The structure of foreign news: The presentation of the Congo, Cuba and Cyprus crises in four Norwegian newspapers. Journal of Peace Research, 2(1), 64-90.
Gamson, W. A., Croteau, D., Hoynes, W., & Sasson, T. (1992). Media images and the social construction of reality. Annual Review of Sociology, 18(1), 373-393.
Gandy, O. H. (1982). Beyond agenda setting: Information subsidies and public policy. New. York, NY: Praeger.
García-Perdomo, V., Salaverría, R., Kilgo, D. K., & Harlow, S. (2018). To share or not to share: The influence of news values and topics on popular social media content in the United States, Brazil, and Argentina. Journalism Studies, 19(8), 1180-1201.
Gitlin, T. (2003). The whole world is watching: Mass media in the making and unmaking of the new left. University of California Press.
Glik, D. C. (2007). Risk communication for public health emergencies. Annual Review of Public Health, 28, 33-54.
Goffman, E. (1974). Frame analysis: An essay on the organization of experience. Cambridge, MA: Harvard University Press.
Hansson, S. O. (2002). Uncertainties in the knowledge society. International Social Science Journal, 54(1),39-46.
Hartley, J. (2010). The uses of digital literacy. New Brunswick, N.J: Transaction Publishers.
Holsti, L. R. (1969). Clinical experience with split-course radiotherapy: A randomized clinical trial. Radiology, 92(3), 591-596.
Holmes, B. J. (2008). Communicating about emerging infectious disease: The importance of research. Health, Risk & Society, 10(4), 349-360.
Husnayain, A., Fuad, A., & Su, E. C. Y. (2020). Applications of Google Search Trends for risk communication in infectious disease management: A case study of the COVID-19 outbreak in Taiwan. International Journal of Infectious Diseases, 95, 221-223.
Ittefaq, M. (2019). Revisiting News Value Theory in the Age of Globalization. Journal of Media Studies, 33(2).
Kasperson, R. E., & Kasperson, J. X. (1996). The social amplification and attenuation of risk. The Annals of the American Academy of Political and Social Science, 545(1), 95-105.
Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., Emel, J., Goble, R., ... & Ratick, S. (1988). The social amplification of risk: A conceptual framework. Risk Analysis, 8(2), 177-187.
Kilgo, D. K., Lough, K., & Riedl, M. J. (2020). Emotional appeals and news values as factors of shareworthiness in Ice Bucket Challenge coverage. Digital Journalism, 8(2), 267-286.
Le, H. T., Nguyen, D. N., Beydoun, A. S., Le, X. T. T., Nguyen, T. T., Pham, Q. T., ... & Vu, L. G. (2020). Demand for health information on COVID-19 among Vietnamese. International Journal of Environmental Research and Public Health, 17(12), 4377.
Lewis, R. E., & Tyshenko, M. G. (2009). The impact of social amplification and attenuation of risk and the public reaction to mad cow disease in Canada. Risk Analysis: An International Journal, 29(5), 714-728.
Lichtenberg, J., & MacLean, D. (1991). The role of the media in risk communication. In R. Kasperson & P. Stallen (Ed.), In Communicating Risks to the Public (pp. 157-173). Dordrecht, Netherlands: Springer.
Lippmann, W. (1946). Public opinion (Vol. 1). New Brunswick, N.J: Transaction Publishers.
Liu, B. F., & Kim, S. (2011). How organizations framed the 2009 H1N1 pandemic via social and traditional media: Implications for US health communicators. Public Relations Review, 37(3), 233-244.
Masip, P., Ruiz-Caballero, C., & Suau, J. (2019). Active audiences and social discussion on the digital public sphere. Review article. El Profesional de la Información (EPI), 28(2).
McGregor, J. (2002, July). Restating news values: Contemporary criteria for selecting the news. In the ANZCA 2002 Conference, Coolangatta.
McComas, K. A. (2006). Defining moments in risk communication research: 1996–2005. Journal of Health Communication, 11(1), 75-91.
Merchant, R. M., Elmer, S., & Lurie, N. (2011). Integrating social media into emergency-preparedness efforts. New England Journal of Medicine, 365(4), 289-291.
Ng, Y. J., Yang, Z. J., & Vishwanath, A. (2018). To fear or not to fear? Applying the social amplification of risk framework on two environmental health risks in Singapore. Journal of Risk Research, 21(12), 1487-1501.
Perez‐Lugo, M. (2004). Media uses in disaster situations: A new focus on the impact phase. Sociological Inquiry, 74(2), 210-225.
Perko, T., Mays, C., Valuch, J., & Nagy, A. (2015). Mass and new media: review of framing, treatment and sources in reporting on Fukushima. Journal of Mass Communication Journalism, 5, 252.
Pidgeon, N., & Henwood, K. (2010). The social amplification of risk framework (SARF): Theory, critiques, and policy implications. Risk Communication and Public Health (2nd. ed., pp. 53–64). Oxford: Oxford University Press.
Pidgeon, N., Kasperson, R. E., & Slovic, P. (Eds.). (2003). The Social Amplification of Risk. Cambridge, England: Cambridge University Press.
Pieri, E. (2019). Media framing and the threat of global pandemics: The Ebola crisis in UK Media and policy response. Sociological Research Online, 24(1), 73-92.
Rains, S. A., Brunner, S. R., & Oman, K. (2014). Social media and risk communication. The Sage Handbook of Risk Communication, 228-243.
Renn, O. (1991). Risk communication and the social amplification of risk. In R. Kasperson & P. J. Stallen (Eds.), In Communicating Risks to the Public (pp. 287-324). Dordrecht, Netherlands: Springer.
Renn, O., Burns, W. J., Kasperson, J. X., Kasperson, R. E., & Slovic, P. (1992). The social amplification of risk: Theoretical foundations and empirical applications. Journal of Social Issues, 48(4), 137-160.
Rossmann, C., Meyer, L., & Schulz, P. J. (2018). The mediated amplification of a crisis: Communicating the A/H1N1 pandemic in press releases and press coverage in Europe. Risk Analysis, 38(2), 357-375.
Sampei, Y., & Aoyagi-Usui, M. (2009). Mass-media coverage, its influence on public awareness of climate-change issues, and implications for Japan’s national campaign to reduce greenhouse gas emissions. Global Environmental Change, 19(2), 203-212.
Sandell, T., Sebar, B., & Harris, N. (2013). Framing risk: communication messages in the Australian and Swedish print media surrounding the 2009 H1N1 pandemic. Scandinavian Journal of Public Health, 41(8), 860-865.
Scheufele, D. A. (1999). Framing as a theory of media effects. Journal of Communication, 49(1), 103-122.
Seeger, M. W., Reynolds, B., & Sellnow, T. L. (2010). Crisis and emergency risk communication in health contexts: Applying the CDC model to pandemic influenza. In Heath, R.L. and O’Hair, D.H. (Eds.), In Handbook of risk and crisis communication (pp. 505-518). New York, NY: Routledge.
Singer, J. B. (2014). User-generated visibility: Secondary gatekeeping in a shared media space. New Media & Society, 16(1), 55-73.
Shih, T. J., Wijaya, R., & Brossard, D. (2008). Media coverage of public health epidemics: Linking framing and issue attention cycle toward an integrated theory of print news coverage of epidemics. Mass Communication & Society, 11(2), 141-160.
Tewksbury, D., & Rittenberg, J. (2012). News on the Internet: Information and Citizenship in the 21st Century. Oxford, UK: Oxford University Press.
Trilling, D., Tolochko, P., & Burscher, B. (2017). From newsworthiness to shareworthiness: How to predict news sharing based on article characteristics. Journalism & Mass Communication Quarterly, 94(1), 38-60.
Weber, P. (2014). Discussions in the comments section: Factors influencing participation and interactivity in online newspapers’ reader comments. New Media & Society, 16(6), 941-957.
Wirz, C. D., Xenos, M. A., Brossard, D., Scheufele, D., Chung, J. H., & Massarani, L. (2018). Rethinking social amplification of risk: Social media and Zika in three languages. Risk Analysis, 38(12), 2599-2624.
Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E. P., Yan, H., & Li, X. (2011, April). Comparing twitter and traditional media using topic models. Lecture Notes in Computer Science, 6611, 338-349.
Zoch, L. M., & Molleda, J. C. (2006). Building a theoretical model of media relations using framing, information subsidies, and agenda-building. In C. H. Botan & V. Hazleton (Eds.), Public Relations Theory II (pp. 279-309). Mahwah, NJ: Lawrence Erlbaum.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code